2015

Modeling ATP-Binding Cassette G2 (ABCG2) Substrate Specificity

Raghav D. Acharya
Virginia Commonwealth University, acharyard@vcu.edu

Aurijit Sarkar
Virginia Commonwealth University

Glen E. Kellogg
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/uresposters

Part of the [Integrative Biology Commons](http://scholarscompass.vcu.edu/urobjects/integrative-biology-commons) and the [Molecular Biology Commons](http://scholarscompass.vcu.edu/urobjects/molecular-biology-commons)

© The Author(s)

Downloaded from

http://scholarscompass.vcu.edu/uresposters/130

This Book is brought to you for free and open access by the Undergraduate Research Opportunities Program at VCU Scholars Compass. It has been accepted for inclusion in Undergraduate Research Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Modeling ATP-Binding Cassette G2 (ABCG2) Substrate Specificity

Raghav D. Acharya¹, Aurijit Sarkar¹, and Glen E. Kellogg²*
Department of Biology¹, and Department of Medicinal Chemistry², VCU, Richmond, VA

Abstract

- Cancer estimates for USA in 2015:
 - 1.6 million new cases,
 - half a million deaths [1]
 - majority of deaths due to resistance to chemotherapy [2]
- ATP-binding cassette (ABC) efflux transporters (e.g., ABCG2)
 - overexpressed in chemotherapy-resistant cancer cells
 - Anticancer drugs are prone to efflux
- What we need:
 - identify substrate and non-substrate chemotypes
 - gain a structural understanding of the efflux mechanism

Aim: Understand ABCG2 structure and function

Introduction

Why are certain compounds effluxed while others are not?

Method

Discrimination Analysis

Target property = ax + by + cz + k

Where:
- a, b & c are correlation coefficients
- x, y & z are independent properties

Non-Linear SVM method used for this study.

References

(3) Hazai, E. et al. BMC Bioinformatics 2013, 14, 130.
(B) Sugimoto et al Mol Cancer Ther 2003, 2(1): 105-112

Descriptors Used

<table>
<thead>
<tr>
<th>Our Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogP (I)</td>
</tr>
<tr>
<td>Length (II)</td>
</tr>
<tr>
<td>Width (III)</td>
</tr>
<tr>
<td>Binding Energy (IV)</td>
</tr>
<tr>
<td>Atom Count (V)</td>
</tr>
<tr>
<td>Radius of Gyration (VI)</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th></th>
<th>ACCURACY</th>
<th>FS</th>
<th>FNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Work</td>
<td>75.6 ± 4.7%</td>
<td>76.2 ± 6.5%</td>
<td>72.5 ± 11.1%</td>
</tr>
<tr>
<td>Atom count</td>
<td>66.4 ± 5.2%</td>
<td>68.9 ± 7.1%</td>
<td>62.8 ± 17.1%</td>
</tr>
<tr>
<td>Binding energy</td>
<td>68.5 ± 5.4%</td>
<td>67.9 ± 5.8%</td>
<td>73.4 ± 13.9%</td>
</tr>
<tr>
<td>Radius Of Gyration</td>
<td>64.8 ± 4.7%</td>
<td>65.9 ± 5.9%</td>
<td>63.2 ± 19.3%</td>
</tr>
<tr>
<td>Length</td>
<td>65.3 ± 6.3%</td>
<td>67.7 ± 7.8%</td>
<td>50.2 ± 26.4%</td>
</tr>
<tr>
<td>Width</td>
<td>65.2 ± 5.4%</td>
<td>66.3 ± 6.5%</td>
<td>59.8 ± 23.1%</td>
</tr>
<tr>
<td>LogP</td>
<td>65.8 ± 6.1%</td>
<td>67.6 ± 7.2%</td>
<td>58.9 ± 26.3%</td>
</tr>
</tbody>
</table>

Discussion

SVM model capable of discriminating between substrates and nonsubstrates with a median accuracy of 76.05% and an Interquartile range of 7.04%.

Accuracy highly dependent on composition of training, test and external validation sets.

Insights into efflux mechanism – role of Arg482 in substrate recognition suggested by significant difference in binding energy between substrates and non substrates.

Implications

- Discriminant models are noisy – understanding of the structural mechanism of efflux might lead to better models.
- More experimental data needed – might make for a better predictive model.

Future directions

- Glean structural information on ABCG2-mediated efflux to improve model.

Acknowledgements

This work was funded by the Mary Louise Andrews Award from the Virginia Academy of Science.