Fast Parallel Machine Learning Algorithms for Large Datasets Using Graphic Processing Unit

Qi Li
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

Part of the Computer Sciences Commons

© The Author

Downloaded from
https://scholarscompass.vcu.edu/etd/2625

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
FAST PARALLEL MACHINE LEARNING ALGORITHMS FOR LARGE
DATASETS USING GRAPHIC PROCESSING UNIT

A Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at Virginia Commonwealth University.

by

QI LI
M.S., Virginia Commonwealth University, 2008
B.S., Beijing University of Posts and Telecommunications (P.R. China), 2007

Director: VOJISLAV KECMAN
ASSOCIATE PROFESSOR, DEPARTMENT OF COMPUTER SCIENCE

Virginia Commonwealth University
Richmond, Virginia
December, 2011
Table of Contents

List of Tables vi

List of Figures viii

Abstract ii

1 Introduction 1

2 Background, Related Work and Contributions 4
 2.1 The History of Sequential SVM 5
 2.2 The Development of Parallel SVM 6
 2.3 K-Nearest Neighbors Search and Local Model Based Classifiers 7
 2.4 Parallel Computing Framework 8
 2.5 Contributions of This Dissertation 10

3 Graphic Processing Units 12
 3.1 Computing Unified Device Architecture (CUDA) 14
 3.2 CUDA Programming Model 14
 3.3 CUDA Optimization Strategy 16

4 Similarity Search on Large Datasets 22
 4.1 Distance Definition 24
4.1.1 Weighted Euclidean Distance ... 24
4.1.2 Cosine Similarity ... 25
4.1.3 Weighted Manhattan Distance ... 26
4.2 Distance Calculation Algorithms .. 26
 4.2.1 Classic Sequential Method ... 26
 4.2.2 Parallel Method Using CUDA ... 30
4.3 Performance Results of Distance Kernel Function 31
4.4 Data Partitioning and Distributed Computation 33
4.5 Parallel Sorting Using CUDA ... 36
 4.5.1 Sequential Sort .. 37
 4.5.2 Parallel Sort ... 42
 4.5.3 Shell Sort ... 44
 4.5.4 Speed Comparison Test of Sorting Algorithms 44
4.6 K-Nearest Neighbors Search using GPU 45

5 Parallel Support Vector Machine Implementation Using GPUs 48
 5.1 Two-Class SVM .. 49
 5.1.1 Hard-Margin SVM .. 49
 5.1.2 L1 Soft-Margin SVM .. 53
 5.1.3 Nonlinear SVM ... 55
 5.2 Multiclass SVM ... 56
 5.2.1 One-Versus-All ... 56
 5.2.2 One-Versus-One ... 57
 5.2.3 Comparison between OVA and OVO 58
 5.3 N-Fold Cross Validation ... 58
 5.4 Platt’s SMO ... 59
 5.5 Keerthi’s SMO ... 64
List of Tables

4.1 Performance comparison of symmetric Euclidean distance matrix calculation. ... 32
4.2 Performance comparison of asymmetric Euclidean distance matrix calculation. ... 33
4.3 Performance result of chunking method on real-world large datasets. ... 37
4.4 K-NNS performance comparison on MNIST (60,000 data points, 576 features). ... 47

5.1 List of popular kernel functions. ... 55

7.1 The experimental datasets and their hyperparameters for the Gaussian RBF kernel. ... 83
7.2 The accuracy performance comparison between GPUSVM and LIBSVM on small and medium datasets. 84
7.3 The speed performance comparison between GPUSVM and LIBSVM on small datasets. .. 86
7.4 The speed performance comparison between GPUSVM and LIBSVM on medium datasets. 87
7.5 The accuracy performance comparison between CPU and GPU on large datasets. ... 91
7.6 The speed performance comparison between CPU and GPU on large datasets. .. 92

7.7 The speed performance comparison among GPUSVM-S, GPUSVM-P and LIBSVM. ... 94
List of Figures

3.1 The architecture of a typical CUDA-capable GPU. 13
3.2 CUDA device memory model. ... 15
3.3 CUDA thread organization. .. 17
3.4 One level loop unroll in the kernel functions. 18
3.5 Non-coalesced reduction pattern and preferred coalesced reduction pattern. ... 20
3.6 Different grid configurations for solving the vector summation problem among four vectors. .. 21

4.1 The complete distance matrix and its partial distance matrices. ... 23
4.2 Impact of different weights on classification. 25
4.3 CUDA blocks mapping for generalized distance matrix calculation. .. 31
4.4 Mapping between data chunks to the related distance submatrices. .. 34
4.5 Map-Reduce pattern for large distance matrix calculation. 35
4.6 Speed performance comparison of sorting algorithms for fixed k and various matrix dimension. ... 46
4.7 Speed performance comparison of sorting algorithms for various k and fixed matrix dimension. .. 47

5.1 A graphic representation of linear SVM. 50
5.2 One-Versus-All SVM classification. 57
5.3 One-Versus-All SVM classification using Winner-Takes-All strategy. 58
5.4 A graphic representation when both Lagrangian multipliers fulfill the constraints. 60
5.5 The design structure for cache. 69
5.6 5-fold cross-validation steps for Gaussian kernels. 74
5.7 Binary linear SVM training on the same dataset with four different C. 75
5.8 Same support vectors shared among the four tasks in Figure 5.7. 75

6.1 GPUSVM: cross-validation interface. 78
6.2 GPUSVM: training interface. 79
6.3 GPUSVM: predicting interface. 79

7.1 The accuracy performance for different ϵ values on medium datasets. 89
7.2 The number of support vectors for different ϵ values on medium datasets. 90
7.3 The speed performance for different ϵ values on medium datasets. 91
7.4 Training time comparison between GPUSVM and LIBSVM on large datasets. 92
7.5 Predicting time comparison between GPUSVM and LIBSVM on large datasets. 93
7.6 Independent task comparison on speed performance and number of support vectors between GPUSVM and LIBSVM. 95
7.7 Total number of kernel computations for GPUSVM-S and GPUSVM-P. 95
Abstract

This dissertation deals with developing parallel processing algorithms for Graphic Processing Unit (GPU) in order to solve machine learning problems for large datasets. In particular, it contributes to the development of fast GPU based algorithms for calculating distance (i.e. similarity, affinity, closeness) matrix. It also presents the algorithm and implementation of a fast parallel Support Vector Machine (SVM) using GPU. These application tools are developed using Computing Unified Device Architecture (CUDA), which is a popular software framework for General Purpose Computing using GPU (GPGPU).

Distance calculation is the core part of all machine learning algorithms because the closer the query is to some data samples (i.e. observations, records, entries), the more likely the query belongs to the class of those samples. *K*-Nearest Neighbors (*k*-NNs) search is a popular and powerful distance based tool for solving classification problem. It is the prerequisite for training local model based classifiers. Fast distance calculation can significantly improve the speed performance of these classifiers and GPUs can be very handy for their accelerations. Meanwhile, several GPU based sorting algorithms are also included to sort the distance matrix and seek for the *k*-nearest neighbors. The speed performances of the sorting algorithms vary depending upon the input sequences. The GPUKNN proposed in this dissertation utilizes the GPU based distance computation algorithm and automatically picks up the most suitable sorting algorithm according to the characteristics of the input datasets.

Every machine learning tool has its own pros and cons. The advantage of SVM is the high classification accuracy. This makes SVM possibly one of the best classifiers. However, as in many other machine learning algorithms, SVM’s training phase slows
down when the size of the input dataset increases. The GPU version of parallel SVM based on parallel Sequential Minimal Optimization (SMO) implemented in this dissertation is proposed to reduce the time cost in both training and predicting phases. This implementation of GPUSVM is original. It utilizes many parallel processing techniques to accelerate and minimize the computations of kernel evaluation, which are considered as the most time consuming operations in SVM. Although the many-core architecture of GPU performs the best in data level parallelism, multi-task (aka. task level parallelism) processing is also integrated into the application to improve the speed performance of tasks such as multiclass classification and cross-validation. Furthermore, the procedure of finding worst violators are distributed to multiple blocks on the CUDA model. This reduces the time cost for each iteration of SMO during the training phase. All of these violators are shared among different tasks in multiclass classification and cross-validation to reduce the duplicate kernel computations. The speed performance results have shown that the achieved speedup of both the training phase and predicting phase are ranging from one order of magnitude to three orders of magnitude times faster compared to the state of the art LIBSVM software on some well known benchmarking datasets.
Chapter 1

Introduction

Machine learning is a discipline targeted on designing and developing algorithms which allow computers to learn based on empirical data and capture the characteristics of interest in order to make a prediction for a new data query. All the collected data can be considered as examples (training samples) which illustrate the relations among the observed variables. Many important patterns can be recognized after applying the learning procedure. Supervised learning is one type of machine learning techniques inferring a function using supervised data, which does the classification or regression jobs. Classifiers are generated in the classification problems in which both input feature vector \vec{x} and the related output label y are known. They are used for classifying new data queries and give discrete output. On the other hand, if the continuous output is required, a regression function will be created instead of a classifier. This dissertation mainly focuses on classification problems. Currently, there are many well developed classification tools, e.g. Support Vector Machine, Neural Network, Decision Tree, k-NNs search, etc. They all have certain advantages and disadvantages in different scenarios. However, one of the common drawback among them is the lack of scalability, which largely restricted their popularity and usage in processing large datasets. The fact is that it is an era of exploded information now,
and large scale datasets are found everywhere. For instance, a mid-size social network website can easily collect Tera-bytes of multimedia data such as users’ status change, newly uploaded photos, daily notes, conversations and so on. Most of these raw data are left unprocessed and archived due to the software limitations. However, these data can be very useful to help learn the users’ preferences, interests and patterns of their activities. The outcome is obvious. Better user experience always leads to more customers. Therefore, the newly improved many-core GPUs are involved to help reduce the processing time for training large datasets. They are superbly fast in floating points operations and small in physical size. The hardware cost is also much less and so is the power consumption compared to CPUs which offer the same level of processing capability. With the assists of GPUs, a proper equipped workstation can do just about the same job which could only be done on a small clustering system in the past. GPU’s popularity on solving data intensive applications is growing everyday. In this dissertation, GPUs are used for developing fast parallel SVM software.

This dissertation is mainly focusing on developing and implementing classification, a.k.a. pattern recognition, algorithms for GPUs. The NVIDIA Tesla GPUs and CUDA software development kit are used as the main hardware and software components for the sake of software implementation. However, the proposed parallel processing algorithms, methodologies and optimization strategies are all original and general, which can be extended and adapted to other platforms or frameworks. They are all considered as the contributions of this dissertation. The final developed GUI enabled SVM tool which has been configured and installed in the department’s ACE-Tesla computer is also part of the contribution of this dissertation.

The original research objective includes the classic linear and non-linear SVM design as well as the local model based classifiers such as Local Linear SVM [1] and Adaptive Local Hyperplane [2]. The SVM part has been successfully finished in this
dissertation work. The crucial problem of the local model based classifiers, which is the distance computation, has also been addressed in the dissertation. In Chapter 2, some existing work done on both sequential and parallel SVM implementation are briefly reviewed. Major contributions of this dissertation are also listed in this chapter. Chapter 3 discusses the detail information about GPU and NVIDIA’s CUDA technology. CUDA programming model and optimization strategies are presented and explained to help understand the proposed implementations in the later chapters. Similarity search and distance computation is discussed in Chapter 4, which is the fundamental of building local model based classifiers. The speed performance of the proposed GPUKNN algorithm is also given. Chapter 5 reviews various decomposition approaches such as Platt’s SMO, Keerthi et al.’s improved SMO and Cao et al.’s parallel SMO in solving Quadratic Programming (QP) problem, which is the core of SVM solver. This chapter also introduces the proposed GPUSVM algorithm. Chapter 6 describes the hierarchy design architecture of the GPUSVM package. Chapter 7 presents the simulations and comparisons between the state of the art LIBSVM software and the GPUSVM software. The comparisons are done for both accuracy and speed performances on several benchmarking datasets of various sizes. The results have shown the impressive speed performance of the novel GPUSVM over LIBSVM while achieving very close accuracies. Chapter 8 gives the conclusions and points out some possible future work as the continuation of this dissertation.
Chapter 2

Background, Related Work and Contributions

This chapter first briefly reviews the historical development of sequential SVM algorithms and parallel SVM algorithm. Parallel SVM algorithm used to be not very popular a decade ago compared to its sequential counterpart. There is much less research done on parallel SVM due to the lack of the availability for parallel hardware. However, it becomes more and more popular recently not only because sequential SVM suffers from a very slow training phase on large datasets, but also due to the huge improvement and the availability of the cheap and easy to program parallel hardware. K-NNs search is another classic classification tool, which recently has also been used for building local model based classifiers. These classifiers have good accuracy and they can be trained efficiently in parallel. Some of these classifiers are reviewed in this chapter. The core of k-NNs search is distance calculation which has been addressed in this dissertation using powerful GPUs. Then several existing mature parallel processing framework are discussed and compared to show their advantages and disadvantages. They are good options for creating parallel machine learning tools. At the end, the contributions of this dissertation are given.
2.1 The History of Sequential SVM

Support Vector Machine [3, 4] is a learning algorithm which has become popular due to its high accuracy performance. It solves both the classification and regression problems. Nevertheless, the training phase of an SVM could be a computationally expensive task especially for large datasets, because the core of the training is solving a QP problem. Solving large QP problem with numeric method can be very complicated, time consuming and memory inefficient. More details of solving QP problem are explained in Chapter 5. There are countless efforts and research which have been put on how to reduce the training time of SVM. After Vapnik invented SVM, he proposed a method known as “chunking” to break down the large QP problem into a series of smaller QP problems. This method seriously reduces the size of the matrix but it still cannot solve large problem due to the computer memory limitations at that time. Osuna et al. presented a decomposition approach using iterative methods in [5]. Joachims introduced practical techniques such as shrinking and kernel caching in [6], which are common implementation in many modern SVM software. He also published his own SVM software called SVMLight [6] using these techniques. Platt invented SMO [7] to solve the standard QP problem by iteratively solving a QP problem with only two unknowns using analytic methods. This method requires very small amount of computer memory. Therefore it addresses the memory limitation issue brought by large training datasets. Kecman et al. [4] proposed the Iterative Single Data Algorithm (ISDA) which uses a single sample during every iteration of the optimization, which performs a coordinate descent search for a minimum of the cost function. ISDA has shown to have all the good properties of SMO algorithm while being slightly faster. Later on, Keerthi et al. developed an improved SMO in [8] which resolves the slow convergence issue in Platt’s method. More recently, Fan et al. introduced a series of working set selection [9], which further improves the speed
of convergence. These methods have been implemented and integrated in the state of the art LIBSVM software [10]. These major work summarize the background details of how to implement a fast classic SVM in sequential programming.

2.2 The Development of Parallel SVM

Compared to the sequential SVM, there is not much of research done on parallel SVM. However, the development of fast parallel SVM is still a very hot research topic. Some earlier works using parallel techniques in SVM can be found in [11], [12], [13] and [14]. Cao et al. presented a very practical Parallel Sequential Minimal Optimization (PSMO) [15] implemented with Message Passing Interface on a clustering system. The performance gain of training SVM using clusters shows the beauty of parallel processing. This method is also the foundation of the proposed GPUSVM here. Graf et al. introduced the Cascade SVM [16] which decomposes the training dataset to multiple chunks and trains them separately. Then the support vectors from different individual classifiers are combined and fed back to the system again. They proved that the global optimal solution can be achieved by using this method. This method uses task level parallelism compared to the data level parallelism in Cao et al.’s method. Cascade SVM offers a new way to handle ultra-large datasets training. Catanzaro et al. proposed a method to train a binary SVM classifier using GPU in [17]. Significant speed improvements were reported compared to the LIBSVM software. The latest GPU version of SVM was from Herrero-Lopez et al. [18]. They enabled the possibility to solve multiclass classification problems using GPU.
2.3 K-Nearest Neighbors Search and Local Model Based Classifiers

Although classic SVM shows its elegance in many aspects, researchers also put lots of efforts on other different variants of SVM. Some of them such as Iterative Single Data Algorithm mentioned earlier uses a single sample in solving QP problem. Others use approximate models such as Proximal SVM [19, 20]. Kecman et al. explore the possibility of combining local linear SVMs to approximate the global optimal solution in [1]. Similar work is also shown in [21, 22]. This local model idea starts an innovative trend with combination of various other classifiers. The Adaptive Local Hyperplane [2] is one of the best. Yang and Kecman’s results have shown that ALH beats most of other classifiers on classification accuracy for several popular datasets. However, finding the optimal local model requires performing k-NNs search on the training dataset. This can be very time consuming since the training stage must test through a series of different k values. One of the typical way of finding k-NNs is using Tree structure [23]. However, this type of method has limited speed performance in the cases when training datasets have large feature space. Besides, doing repeated individual k-NNs search is not very practical for training local model based classifiers in terms of speed performance. The better approach would be computing the distance matrix of the training dataset in advance and then sort it with indexes by either rows or columns. Thus k-NNs can be easily located in the index matrix with whatever given k value without performing the search operation. The disadvantage of this method is the high cost of the distance matrix computation. This disadvantage can be offset by utilizing the computational power of GPUs. The earliest implementation of GPU based Euclidean distance calculation is introduced by Chang et al. in [24], but their proposed implementation is too simple to be useful in application design.
A more practical implementation can be found in [25]. The complete GPU KNN algorithm was first implemented by Garcia et al. [26]. However, they use a modified insertion sort which only sorts a portion of the distance matrix. Thus it involves duplicated distances computation when a series of k values are tested. Furthermore, there are neither options for using other metrics nor for an inclusion of the weights in the distance computation. Weighted Euclidean distance computation is a necessary part of ALH algorithm. Our research is an extension of [25, 27] which includes the weighted Euclidean distance, cosine similarity and Manhattan distance calculation using GPUs. It will be integrated into the Local Linear SVM and ALH to improve their speed performance during the training phase in the future.

2.4 Parallel Computing Framework

There are many existing parallel programming tools and models proposed for different architecture of computer systems in the past decade. Message Passing Interface (MPI) [28] and OpenMP [29] are two of the most widely used parallel models which are designed for main stream computing systems. MPI is a model in which computing nodes do not share memory with each other. It is commonly used in a distributed environment such as a clustering system. All data sharing and exchange must be done through explicit message communications. A typical setup of MPI model includes a master node and a group of slave nodes. The master node scatters the data to the slave nodes and gathers the results back after the computations have finished on the slave nodes. Most of the synchronizations are done on the master node. Performance of MPI system is highly related to the speed of intra-network connection due to the large amount of data exchange. Thus many MPI based algorithms are optimized to minimize these data exchange. The lack of the shared memory access across multiple computing nodes requires a significant amount of work on the appli-
cation design. OpenMP supports shared memory, which is more commonly used in the standard workstation systems and multi-core personal computers. Shared memory system usually has a smaller scale compared to the distributed system. The scalability of OpenMP are restricted compared to MPI. Furthermore, the requirement of precise threads management will not allow the OpenMP to generates many threads due to the cost of threads overhead, threads context switching and threads synchronization. Besides, if the amount of threads exceeds the number of computing cores, time-division multiplexing is used by computing cores to switch between physical threads. Therefore it is less likely to improve the performance by creating more threads, which just involves extra computations. The advantage of OpenMP is the boost on the performance of existing applications by using multi-core system with minimal amount of modifications on the original algorithms if they are applicable. For example, algorithms running data independent tasks in a large loop structures can be easily accelerated with OpenMP.

GPU’s programming model is kind of a mixture of both message passing and shared memory with some of its own unique features. First of all, there is no shared memory access between GPUs and CPUs. All the data must be transferred from the main memory to the device memory for processing, which behaves the same as MPI model does. Secondly, there are shared memory which can be accessed by all threads within a block but threads from different blocks inside of the GPU. This shows certain similarity feature to shared memory model. Furthermore, GPU threads are lightweight and efficient. They are much simpler in structure compared to CPU threads with less overhead, which makes it possible to generate huge amount of threads for massive parallel processing. More details about GPU programming model will be introduced in Section 3.2. More recently, several major industry players including Apple, Intel, AMD/ATI and NVIDIA have jointly developed a standard-
ized programming model called Open Computing Language (OpenCL) [30]. OpenCL shares many common aspects from CUDA but it is still not very mature which makes it less popular on NVIDIA GPUs. Therefore CUDA is used for implementing the proposed algorithm in order to achieve the maximum speed gain by using the latest hardware from NVIDIA.

2.5 Contributions of This Dissertation

Although there is plenty of research done using GPU to improve speed performance of complex algorithms, many applications are still theory oriented and lack practical usage. This dissertation not only introduces the parallel SVM algorithm and distance calculation algorithms designed for GPU programming, but it also implements them using CUDA framework and makes them practical for processing real-world datasets. As it has been mentioned in the previous section, the author develops the algorithms in a way that they can be ported to other platform such as OpenCL. The GPUKNN search algorithm introduced in this dissertation, which is the fundamental for the use of local model based classifiers, combines the fast distance calculation and sorting using GPU. By largely reducing the time cost of k-NNs search, the speed performance of LLSVM and ALH is expected to be improved heavily. Furthermore, not only does this practical application offer the choice for different distance metrics, but it is also smart to pick up the proper sorting algorithm for the best performance depending upon the characteristics of input datasets.

The CUDA implementation of parallel SVM developed in this dissertation has achieved great performance using Fermi series Tesla GPUs, which are the second generation hardware platform for CUDA. The software utilizes the parallelism in both data level and task level to maximize the performance of one single GPU card or several GPU cards operating simultaneously. It also leverages the computation
load between CPU and GPU. This helps improving the efficiency of the GPUSVM algorithm. The current implementation of the GPUSVM outperforms the state of the art LIBSVM tool in speed performance for both training phase and predicting phase. It also has as good accuracy performance as LIBSVM. Besides, the software is compatible with previous generation of GPUs and it is practical in solving real-world problems. It supports multi-GPU system to enable even further speed improvement on cross-validation training, which is a slow procedure on classic sequential machines. The software is developed using a three-layer structure. The bottom layer written in CUDA has an SVM solver and a predictor for SVM training and predicting functions. The middle layer written in Python offers command line interface to call the solver and predictor. It also contains utility functions of scaling the data files, shuffling the input datasets, running cross-validations and some other tasks related to SVM. The upper layer written in JAVA offers a user friendly graphic user interface for easy operation.
Chapter 3

Graphic Processing Units

GPUs are micro processors commonly seen on video cards. The main function of GPU is offloading and accelerating the graphic rendering jobs from the CPU. Rendering is a process of generating an image from a model by a set of computer programs and it usually involves floating point intensive computations based on various mathematical equations. Thus, before 2006, most of these GPUs were designed in a way that computing resources were partitioned into vertexes and pixel shaders. Even though the hardware of GPUs have matured for intensive floating point computations, there is no other way but using OpenGL or DirectX to access the features in GPUs. Smart programmers disguised their general computations to graphic problems in order to utilize the hardware capability of GPU. They were the first who started to use GPUs to solve general purpose computing problems. In order to overcome this inflexibility, NVIDIA introduced the GeForce 8800 GTX in 2006, which maps the separated programmable graphics stages to an array of unified processors. Figure 3.1 shows the shader pipeline of GeForce 8800 GTX GPU. It is organized into an array of highly threaded streaming processors (SMs). In Figure 3.1, two SMs form a building block; however, the number of SMs in a building block can vary between different generations of CUDA GPUs. Each SM in Figure 3.1 has a number of streaming processors
(SPs) that share control logic and instruction cache. Each GPU currently comes with up to 6GB (e.g. Tesla C2070) GDDR DRAM, referred to as global memory. These global memory are essentially the frame buffer memory that is used for graphics. For graphics applications, they hold video images and texture information for rendering, but for computing purpose they function as high bandwidth off-chip memory. All later GPU products from NVIDIA follow this design philosophy thus they are capable of general purpose computing and referred to as CUDA capable devices.

The latest Tesla GPU has the shader processors (cores) fully programmable with large instruction memory, instruction cache and instruction sequencing control logic. In order to reduce the total hardware cost, several shader processors will share the same instruction cache and instruction sequencing control logic. The Tesla architecture introduced a more generic parallel programming model with a hierarchy of parallel threads, barrier synchronization and atomic operations to dispatch and manage highly parallel computing work. Combined with C/C++ compiler, libraries, runtime
software and other useful components, CUDA Software Development Kit is offered to developers who do not possess the programming knowledge of graphic applications. With a minimal learning curve of some extended C/C++ syntax and some basic parallel computing techniques, developers can start migrating existing projects using CUDA with NVIDIA GPUs. Introductions of CUDA programming model and its related optimization strategies are given in the following sections.

3.1 Computing Unified Device Architecture (CUDA)

CUDA is a software platform developed by NVIDIA to support their general purpose computing GPUs for easy programming and porting existing applications to GPUs. It primarily uses C/C++ syntax and a few new keywords as an extension, which offers a very low learning curve for an application designer. The latest CUDA version has been supported by various third parties. Many toolboxes and plug-ins can be found to help increase the productivity. CUDA memory model and thread organization is introduced in this part.

3.2 CUDA Programming Model

Figure 3.2 shows the memory model of the CUDA device. The device codes can read/write per-thread registers; read/write per-block shared memory; read/write per-grid global memory; read only per-grid constant memory. The host codes can transfer data to/from per-grid global and constant memory. Constant memory offers faster memory access to CUDA threads compared to global memory. The threads are organized in a hierarchical structure. The top level is a grid which contains blocks of
threads. Each grid can contain at most 65535 blocks in either x- or y-dimension or both in total. Each block can contain at most 1024 (Fermi series) or 512 threads in either x- or y-dimension, or maximally 64 in z-dimension. The total number of threads in all three dimensions must be less than or equal to 1024 or 512 depending on the hardware specification. The organization of threads is shown in Figure 3.3. The host (CPU) launches the kernel function on the device (GPU) in the form of grid structure. Once the computation is done, the device becomes available again then the host can launch another kernel function. If multiple devices are available at the same time, every kernel function can be managed through one CPU thread. It is fairly easy to launch a grid structure containing thousands of threads. The optimum number of
thread and block configuration varies among different applications. To achieve better performance, there should be at least thousands or tens of thousands of threads within one grid. It would not make much sense to use too few threads to extract maximal performance from hardware. However, too many threads whose number exceeds the number of data would also increase the thread overhead and bring down the efficiency. The multiprocessor creates, manages, schedules, and executes threads in groups of 32 parallel threads called warps. Thus a multiple of 32 could be a good candidate value for the optimal number of threads per block. Threads within the same block have limited shared memory and they are able to communicate with each other by using these shared memory. All threads have their own registers and access to the global memory as well as the constant memory. The size of the global memory can be as large as up 6GB (depending on the GPU hardware). Similar to Message Passing Interface (MPI), there is no shared memory between host and device thus the data must be transferred from the host memory to device memory in the first place. The result must also be transferred back for future processing or storage.

3.3 CUDA Optimization Strategy

Optimizations generally are targeted on improving certain algorithms with maximum utilization of hardware. Several techniques which have been used in the proposed algorithms are given here. The first one is loop unrolling which is shown in Figure 3.4. Loop unrolling has been used in sequential programming for a long time. Most modern compilers automatically unroll the loop in certain degrees to achieve better performance. In the simple example below, the loop structure is executed only once in the unrolled version instead of twice in the normal version. The advantage is that each thread can now process two data elements without using an extra loop. It is true in most situations that not enough threads can be created to match the total
number of data. Thus, each thread may process more than one data element, which requires the usage of loop structure. Think about how to write a code to do vector summation in sequential way. It can be done like this:

```c
int idx = 0;
while(idx < n) {
    sum[idx] = a[idx] + b[idx];
    ++idx;
}
```
Similarly, writing a CUDA kernel function to do the same job looks like the following:

```c
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int shift = gridDim.x * blockDim.x;
while(idx < n) {
    sum[idx] = a[idx] + b[idx];
    idx += shift;
}
```

Figure 3.4: One level loop unroll in the kernel functions.
To reduce the overhead of loop, common practice suggests doing one level of loop unrolling as shown below.

```c
int idx = blockIdx.x * (blockDim.x * 2) + threadIdx.x;
int shift = blockDim.x * blockDim.x * 2;
while (idx < n) {
    sum[ idx ] = a[ idx ] + b[ idx ];
    if (idx + blockDim.x < n) {
        sum[ idx + blockDim.x ] = a[ idx + blockDim.x ] + b[ idx + blockDim.x ];
    }
    idx += shift;
}
```

CUDA compiler does not support automatic loop unrolling like sequential programming compilers due to the complexity of condition checking mechanism. Thus it is the developers’ job to write loop unrolling statements in the source code.

Another commonly used technique is reduction. Because threads from different blocks cannot communicate with each other, the results returned from each block compose a vector. In most applications, since the results are distributed to many blocks for parallel processing, they require the summation of the distributed results and this is so called reduction. Figure 3.5 shows both inefficient reduction pattern and preferred reduction pattern. It is important to let the threads access the global memory in a coalesced manner to achieve the best performance. The correct implementation of reduction technique is much more complex than what is shown in the figure. Threads must be synchronized at every stage and reductions stop at the block level since there are no threads communication among blocks. Thus, to compute the final result the complete reduction will require multiple launches of kernel functions with reduced grid size until the total number of blocks in the grid becomes one. Reduction can be utilized to implement MAX, MIN, SUM and some other functions.
which are basic but very useful.

![Non-coalesced and Preferred Coalesced Reduction Patterns](image)

Figure 3.5: Non-coalesced reduction pattern and preferred coalesced reduction pattern.

The third commonly used technique is the utilization of shared memory. GPUs are fast on floating points operations but not on memory accessing operations. If a program requires frequently access to memories, it might not be able to achieve better performance by using GPUs. Although GPU can have global memory as large as 6GB, the amount of shared memory is very limited. Assuming a problem which computes summations of any two vectors among four different vectors, there are six different combinations as a group of two vectors. Thus creating six rows of blocks to compute the results is most intuitive idea as our first response. However, this
configuration is shown as Grid 0 in Figure 3.6. Each vector must be read three times from the global memory. Instead, Grid 1 configuration reduces the number of reads for the same vectors to two, but every row block must compute two results. In order to let the threads share data between two vector summations, shared memory must be involved to store the data read from the global memory. In the configuration of Grid 2, vector A is read only once but all other vectors are read twice. This does very small improvement compared to Grid 1 in terms of memory accessing operations but it requires much more shared memory, which might be not satisfied in some scenarios. Thus, how to design the grid configuration and maximize the usage of limited shared memory is an important concern for producing efficient codes. One good example is the matrix multiplication which can be found in CUDA SDK sample codes. Our fast distance computation routine in the next Chapter carries similar idea behind the scene.

Figure 3.6: Different grid configurations for solving the vector summation problem among four vectors.
Chapter 4

Similarity Search on Large Datasets

Measuring similarity (i.e. distance, affinity, closeness) between different samples is the fundamental approach in pattern recognition. This approach is based on the belief that the closeness in a feature space means similarity between two samples. Similarity search is based on the comparisons among distances. Euclidean, cosine and Manhattan distances are common similarity metrics which are used in many machine learning algorithms. The idea behind the similarity search is that a smaller distance between two data points may indicate a stronger or closer relationship between them. General distance matrix for a dataset is a symmetric square matrix containing distances from each data point to all other data points including itself. When the total number of samples grows large, it is usually not feasible to compute or store the complete distance matrix in the system memory. For example, a dataset containing 100,000 samples could cost approximately 40GB space in single precision format and twice of that in double precision. Obviously, half of them can be reduced due to the symmetric property, however it is still not practical in real-world application design. Therefore most of distance computations are done in real time or precalculated in advance. A
fragment of the complete distance matrix is referred to as a partial distance matrix shown in Figure 4.1. It contains distances between one set of data points to another set of data points, which could have different number of samples. Partial distance matrix can be asymmetric and rectangular. It is used for reproducing the original complete distance matrix.

![Complete Distance Matrix and Partial Distance Matrices](image)

Figure 4.1: The complete distance matrix and its partial distance matrices.

This chapter addresses the issue of how to utilize the power of GPU to accelerate the time consuming distance matrix computation. The definitions of three major distance kernels are given at the beginning and then the classic algorithms as well as the parallel algorithm using CUDA for distance calculation are introduced. Data partitioning and distributed computing techniques for large distance matrix are also presented. And then a few parallel sorting algorithms are given to build the complete GPU based GPUKNN software. This tool has a good speed performance in solving \(k \)-NNs search problem compared to the classic sequential algorithm. The results of the speed performance on calculating distance matrix, sorting and the GPUKNN are given at the end of the chapter.
4.1 Distance Definition

Define two matrices A and B. A contains n_A samples and each sample has m features. Each row represents one data sample from the dataset. B has n_B samples and it is organized in the same format as A. The distance matrix D_{AB} between A and B is an n_A by n_B matrix where each row represents the distances between one data sample from A to all data samples from B. The distance value d_{ij} represents the distance between data sample \vec{a}_i and data sample \vec{b}_j.

4.1.1 Weighted Euclidean Distance

Weighted Euclidean distance is a more generalized Euclidean distance, also known as weighted L_2-norm distance, which offers the option of specifying a weight for each different feature. It is defined by

$$d_{ij} = \sqrt{\sum_{k=1}^{m} w_k (a_{ik} - b_{jk})^2}.$$ \hspace{1cm} (4.1)

When all weights are equal to one, weighted Euclidean Distance becomes the standard Euclidean Distance. If $w_k = 0$, the kth feature will be eliminated in distance calculation. Weighted Euclidean distance becomes useful when the features have different impacts on the classification result. In Figure 4.2, the solid green line defines the best separation boundary. Both features must be used for computing this separation line. However, the dashed yellow line can also separate the two classes without any failure and it only uses feature 1. It is obvious that correct classification cannot be done using just feature 2. This indicates that using a bigger weight for feature 1 compared to feature 2 might yield better classification result. If the weights are properly chosen, weighted Euclidean distance performs better than standard Euclidean distance. Many advanced machine learning models such as ALH in [2] use weighted...
Euclidean distance.

4.1.2 Cosine Similarity

Cosine similarity, a.k.a. cosine distance is defined as

$$d_{ij} = \frac{\vec{a}_i \cdot \vec{b}_j}{\|\vec{a}_i\| \|\vec{b}_j\|} = \frac{\sum_{k=1}^{m} a_{ik} b_{jk}}{\sqrt{\sum_{k=1}^{m} a_{ik}^2} \sqrt{\sum_{k=1}^{m} b_{jk}^2}}. \quad (4.2)$$

Cosine similarity is a useful measurement in documents comparison and text mining. Weighted cosine similarity is not widely used.
4.1.3 Weighted Manhattan Distance

Weighted Manhattan distance is another popular distance measurement similar to weighted Euclidean distance. It is also referred as weighted L_1-norm distance, which is defined as

$$d_{ij} = \sum_{k=1}^{m} w_k |a_{ik} - b_{jk}|$$

(4.3)

4.2 Distance Calculation Algorithms

4.2.1 Classic Sequential Method

Algorithm 1 shows the standard procedure of calculating distances between two datasets. This method involves a nested for loop structure, which leads to a polynomial time complexity of $O(n_A n_B m)$ a.k.a. cubic time. Considering the size of feature space is much smaller than the number of data samples, the time complexity is reduced to quadratic $O(n^2)$ in many cases. However, algorithms having quadratic time complexity are still very slow and time consuming. A good property of Euclidean distance is that the computations for the distance matrix can be broken down to matrix level operations. In this way, the nested loop structure for pair-wise distance computation can be removed. This is shown in Algorithm 2.

The idea of this algorithm is computing the weighted Euclidean distance matrix using three partial distance matrices directly shown in Equation 4.4 instead of computing every pair of distance one by one using loops.

$$D_{AB} = \sqrt{P_1 + P_2 - 2P_3}.$$

(4.4)

The square root operation on the matrix is doing element-wise square root. The three
Algorithm 1 Classic sequential distance calculation using loops.

1: load A, B, \vec{w} and allocate memory for D_{AB}
2: for $i = 1$ to n_A do
3: for $j = 1$ to n_B do
4: $d_{ij} = \text{computeEucDist}(\vec{a}_i, \vec{b}_j, \vec{w})$
5: or $d_{ij} = \text{computeCosDist}(\vec{a}_i, \vec{b}_j)$
6: or $d_{ij} = \text{computeManDist}(\vec{a}_i, \vec{b}_j, \vec{w})$
7: end for
8: end for
9: return D_{AB}
10: computeEucDist(\vec{a}_i, \vec{b}_j, \vec{w})
11: $d = 0$
12: for $k = 1$ to m do
13: $d = d + w_k(a_{ik} - b_{jk})^2$
14: end for
15: $d = \sqrt{d}$
16: return d
17:
18: computeCosDist(\vec{a}_i, \vec{b}_j)
19: $p = p_a = p_b = 0$
20: for $k = 1$ to m do
21: $p = p + a_{ik}b_{jk}$
22: $p_a = p_a + a_{ik}a_{ik}$
23: $p_b = p_b + b_{jk}b_{jk}$
24: end for
25: $d = p / (\sqrt{p_a}\sqrt{p_b})$
26: return d
27:
28: computeManDist(\vec{a}_i, \vec{b}_j, \vec{w})
29: $d = 0$
30: for $k = 1$ to m do
31: $d = d + w_k|a_{ik} - b_{jk}|$
32: end for
33: return d
Algorithm 2 Matrix operation based method for weighted Euclidean distance.

1: load A, B, $\vec w$ and allocate memory for D_{AB}
2: $\vec v_1 = (A \cdot A)\vec w$
3: $\vec v_2 = (B \cdot B)\vec w$
4: $P_1 = [\vec v_1 \; \vec v_1 \ldots \; \vec v_1]$
5: $P_2 = [\vec v_2 \; \vec v_2 \ldots \; \vec v_2]^T$
6: $W = [\vec w \; \vec w \ldots \; \vec w]^T$
7: $P_3 = A(B \cdot W)^T$
8: $D_{AB} = \sqrt{P_1 + P_2 - 2P_3}$
9: return D_{AB}

Partial distances matrices are P_1, P_2 and P_3 and they are expressed as

$$P_1 = \begin{bmatrix} \sum_{k=1}^{m} w_k a_{1k}^2 & \cdots & \sum_{k=1}^{m} w_k a_{1k}^2 \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{m} w_k a_{n,k}^2 & \cdots & \sum_{k=1}^{m} w_k a_{n,k}^2 \end{bmatrix} = [\vec v_1 \; \vec v_1 \ldots \; \vec v_1], \quad (4.5)$$

$$P_2 = \begin{bmatrix} \sum_{k=1}^{m} w_k b_{1k}^2 & \cdots & \sum_{k=1}^{m} w_k b_{1k}^2 \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{m} w_k b_{nk}^2 & \cdots & \sum_{k=1}^{m} w_k b_{nk}^2 \end{bmatrix} = [\vec v_2^T \; \vec v_2^T \ldots \; \vec v_2^T], \quad (4.6)$$

$$P_3 = \begin{bmatrix} \sum_{k=1}^{m} w_k a_{1k} b_{1k} & \cdots & \sum_{k=1}^{m} w_k a_{1k} b_{nk} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{m} w_k a_{nk} b_{1k} & \cdots & \sum_{k=1}^{m} w_k a_{nk} b_{nk} \end{bmatrix}. \quad (4.7)$$

Matrices P_1 and P_2 shown in Equation 4.5, 4.6 are composed by vector $\vec v_1$ and vector $\vec v_2$. The weight vector $\vec w$ is shown in

$$\vec w = [w_1 \; w_2 \ldots \; w_k]^T. \quad (4.8)$$
Vector \vec{v}_1 is acquired by

$$
\vec{v}_1 = \left[\sum_{k=1}^{m} w_k a_{1k}^2, \sum_{k=1}^{m} w_k a_{2k}^2, \ldots, \sum_{k=1}^{m} w_k a_{n,k}^2 \right]^T = (\mathbf{A} \cdot \mathbf{A}) \vec{w} \quad (4.9)
$$

and vector \vec{v}_2 is acquired by

$$
\vec{v}_2 = \left[\sum_{k=1}^{m} w_k b_{1k}^2, \sum_{k=1}^{m} w_k b_{2k}^2, \ldots, \sum_{k=1}^{m} w_k b_{n,k}^2 \right]^T = (\mathbf{B} \cdot \mathbf{B}) \vec{w}. \quad (4.10)
$$

The partial distance matrix \mathbf{P}_3 is computed by

$$
\mathbf{P}_3 = \mathbf{A}(\mathbf{B} \cdot \mathbf{W})^T. \quad (4.11)
$$

When all weights are equal to 1, the weighted Euclidean distance becomes standard Euclidean distance and Equation 4.11 changes to

$$
\mathbf{P}_3 = \mathbf{A}\mathbf{B}^T. \quad (4.12)
$$

The matrix multiplication in Equation 4.11 or 4.12 takes most of the computation time in Euclidean distance calculation. The naive implementation yields exact same quadratic time complexity. However, CUDA has its own fast Basic Linear Algebra Subroutines called CUBLAS [31]. The weighted Euclidean distance calculation can be accelerated by calling matrix-matrix multiplication routine from CUBLAS. This implementation turns out to have improved time complexity compared to the quadratic one. When it comes to the cosine similarity and weighted Manhattan distance, there is no way to transform the distance matrix computations to simple matrix opera-
tions thus routines from CUBLAS are useless. Although, the time complexity stays in quadratic, the time cost of distance computations can still be reduced by using parallel techniques. A general GPU based parallel distance computation algorithm is introduced in the following section. It can be used for all three metrics and it offers as good speed performance as using CUBLAS for weighted Euclidean distance computations as well.

4.2.2 Parallel Method Using CUDA

In order to map the distance calculation to the CUDA programming model, the GPU kernel function utilizes a 2-D grid and uses shared memory to reduce the duplicated memory fetching operations. The size of the block within the grid is set to 16 by 16. The following code is used for initialization.

```c
#define BLOCK_DIM 16
dim3 dimBlock(BLOCK_DIM,BLOCK_DIM,1);
dim3 dimGrid((nA+BLOCK_DIM-1)/BLOCK_DIM ,
(nB+BLOCK_DIM-1)/BLOCK_DIM,1);
```

In this way, the size of the grid will depend upon the input. It overcomes the implementation issue in [24] and supports input datasets with any dimensionality and any number of data points. The pseudo code provided in [24] requires the input feature space as a multiple of 32 and the input number of data points as a multiple of 2, which are not practical in real-world applications. Figure 4.3 shows how the kernel function works. Most blocks compute 256 pairwise distances. Some blocks located on the bottom edge or the right edge of the grid may compute less than 256 pairwise distances. That means some threads allocated in these blocks are not involved for the computation. This cannot be avoid when the input datasets are irregular, which do not have the number of data points as a multiple of 16. The shared memory is used for storing the values of the features and the values of the weights. Feature values can
be reused in calculation of 16 pairwise distances and the weight values can be reused in calculation of all 256 pairwise distances in that block. This significantly reduces the time cost of global memory access.

Figure 4.3: CUDA blocks mapping for generalized distance matrix calculation.

4.3 Performance Results of Distance Kernel Function

The following results are published in [25] generated by a workstation equipped with the first generation of Tesla cards. The workstation has an Intel Xeon E5462 2.8GHz quad-core CPU and 16GB RAM. There are three Tesla C1060 GPU devices connected to the system through PCI Express interface. Each of these cards has 4GB device memory. The CUDA 3.0 toolkit is used and the driver version is 195.36.15 for 64bit
Linux system. The operating system is Fedora Core 10 Linux. The benchmark of GPU algorithms includes two ways of data transferring time between host memory and device memory as well as the computational time on the GPU.

Table 4.1 shows the normal Euclidean distance matrix calculation comparison among naive C implementation, MKL based C implementation, Chang et al.’s CUDA implementation [24], and the proposed generalized CUDA implementation. It is easy to observe that using MKL and multi-thread support for CPU can boost the performance 5 to 6 times, thus comparison with the naive C implementation does not truly reflect the performance gain by using GPU. Our implementation is slightly slower in these special cases (both \(n \) and \(m \) are multiple of 16) compared to Chang et al.’s implementation because the kernel function has been modified to suit general datasets, which cannot be used by Chang et al.’s method. It takes two datasets as input, thus the same dataset is copied twice from the system memory to the device memory in these special cases. In general, the GPU implementation still has a speed-up of approximately 5 times compared to MKL which is in the reasonable range based on the performance comparison of matrix-matrix multiplication between MKL and CUBLAS shown in [32].

Table 4.1: Performance comparison of symmetric Euclidean distance matrix calculation.

<table>
<thead>
<tr>
<th>Input matrix (n)</th>
<th>Naive C</th>
<th>Efficient C (MKL)</th>
<th>Chang et al.’s CUDA</th>
<th>Generalized CUDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4096</td>
<td>11.9</td>
<td>2.40 (4.96x)</td>
<td>0.36 (33.06x)</td>
<td>0.47 (25.32x)</td>
</tr>
<tr>
<td>8192</td>
<td>48.4</td>
<td>8.49 (5.70x)</td>
<td>1.42 (34.08x)</td>
<td>1.79 (27.04x)</td>
</tr>
<tr>
<td>12288</td>
<td>108.8</td>
<td>18.26 (5.96x)</td>
<td>3.16 (34.40x)</td>
<td>3.82 (28.48x)</td>
</tr>
</tbody>
</table>

Time unit is second and the size of feature space is 1024. Speed up is related to the naive C implementation. Value \(n \) is number of data points.

Table 4.2 shows the performance comparison of calculating generalized distance
matrix between any two input datasets. Chang et al.’s method is not listed because of the unsuitability. CUBLAS 3.0 based implementation comes at the top and the proposed generalized CUDA implementation is very close to the GPU matrix operation based method. Other distances matrices, e.g. Manhattan distance and cosine distance, cannot be efficiently transformed to matrix level operations. However, they still can be easily implemented by modifying the proposed method.

Table 4.2: Performance comparison of asymmetric Euclidean distance matrix calculation.

<table>
<thead>
<tr>
<th>Input matrices</th>
<th>Efficient C (MKL)</th>
<th>Generalized CUDA</th>
<th>CUBLAS 3.0 CUDA</th>
<th>MAGMA 0.2 CUDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000 2000</td>
<td>0.92</td>
<td>0.20(4.60x)</td>
<td>0.21(4.38x)</td>
<td>0.22(4.12x)</td>
</tr>
<tr>
<td>4000 4000</td>
<td>1.82</td>
<td>0.38(4.79x)</td>
<td>0.37(4.92x)</td>
<td>0.42(4.33x)</td>
</tr>
<tr>
<td>12000 6000</td>
<td>7.98</td>
<td>1.75(4.56x)</td>
<td>1.56(5.12x)</td>
<td>1.72(4.64x)</td>
</tr>
<tr>
<td>12000 12000</td>
<td>15.86</td>
<td>3.52(4.51x)</td>
<td>2.96(5.36x)</td>
<td>3.33(4.76x)</td>
</tr>
</tbody>
</table>

Time unit is second and the size of feature space is 1000. Speed up is related to the efficient C implementation. Value \(n \) is number of data points.

4.4 Data Partitioning and Distributed Computation

Considering scenarios with large datasets, all data points can neither be loaded into the system memory at one time, nor is there enough space for storing the complete distance matrix. It would be necessary to break down the complete distance matrix into many small distance matrices and calculate them individually in parallel. Figure 4.4 shows the approach of how to split the input datasets to chunks and calculate the generalized distance matrices between any two chunks. Each chunk is assigned an index from 1 to \(k \). The final distance matrix contains \(k \) by \(k \) small distance matrices.
matrices. Due to the symmetric property of the complete distance matrix, there are only \(k(k + 1)/2 \) small distance matrices required to be calculated in a total of \(k^2 \) ones. The rest of them can be acquired by simply doing transpose operation on the calculated ones, e.g. \(D(1, 2) \) is the transpose of \(D(2, 1) \). The performance gain \(g \) can be roughly computed by

\[
g = \frac{k - 1}{2k} \cdot 100\%. \tag{4.13}
\]

For example, if the input dataset is split to 4 chunks, only 10 small distance matrices out of 16 are required to be computed. This roughly saves 37.5% of total computations. These small distance matrices can be calculated using the method, which is accelerated by GPU, introduced in the previous section. The amount of physical GPU devices determines how many grids can be launched simultaneously.

The Map-Reduce [33] pattern has been proposed to handle large data processing problems in a cluster environment. The merits of this programming pattern is adopted and modeled to do the large distance matrix calculation job. As shown in Figure 4.5,
Figure 4.5: Map-Reduce pattern for large distance matrix calculation.

the input reader first reads multiple chunks into the system memory. Then the mapper
generates a list of key/value pairs, which correspond to these active chunks currently
loaded in the system memory. For each key/value pair, both key and value store the
indices of the chunks. The reducers iteratively load pairs of chunks with the same
key and search for any available GPU device to launch the distance kernel function.
There is a list which stores the IDs of the available GPUs. Any GPU device which
is taken by a reducer will be removed from the list and appended back after it is
released by that reducer. Each reducer only calculates the small distance matrices
whose keys are smaller than or equal to their values. The final distance matrix is
in the form of its upper triangular. After all small distance matrices with the same
key are calculated by the reducer, the results are grouped together and passed to the
output writer. The output writer concatenates the results from every reducer and
writes them to a distributed file system if available. A drawback of this approach is
that different reducers may have different workloads. This can be solved by fixing the
number of small distance matrices calculation job to each reducer. For example, the
first reducer calculates $D(1,1)$ to $D(1,5)$, the second calculates $D(1,6)$ to $D(1,10)$
and so on. However, the key value must still be kept the same in each reducer. In this
way, only certain reducers might have less jobs. But in a general view, the distance
calculations are distributed equally among reducers. When each reducer finishes its
job, it will notify the mapper to update the key/value pairs list and refresh the system memory by loading in new chunks and deleting used ones.

The complete model requires a GPU cluster environment and extra communication support, e.g. MPI, from different nodes as well as a proper distributed file system. Our test is done on a workstation with three Tesla C1060 GPU devices. This is much simpler compared to the GPU cluster environment. Multi-threading is used for implementing different functions for input reader, mapper, reducer and output writer. Since all reducers will be competing for the GPU device resources on the same computer, whether they have an equal amount of jobs does not matter anymore. Because all three cards will be used for distance matrices calculations all the time, an approximately performance increase of 3x is achieved compared to using one card to do the same job sequentially.

Table 4.3 shows the performance of finalized chunking method tested on the real-world datasets. File I/O time is excluded because both CPU and GPU implementations share the same procedure. The time cost is counted for calculating submatrices only. The data transferring time for GPU is reduced because in certain cases some datasets can be reused. For example, if the same GPU is assigned to the job calculating $D(1, 1)$ and $D(1, 2)$, only chunk 2 needs to be loaded into the device memory in the second distance matrix calculation. The speedup is close to 15 times when utilizing three GPU devices together on a dataset containing more than half million data points.

4.5 Parallel Sorting Using CUDA

Once the distance matrix is acquired, the parallel sorting algorithm can be applied to locate the k-NNs. There are many classic sequential sorting algorithms available such as insertion sort, quick sort, shell sort, merge sort and radix sort. Although all
Table 4.3: Performance result of chunking method on real-world large datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>n</th>
<th>m</th>
<th>Xeon 4-core</th>
<th>c</th>
<th>Tesla C1060</th>
<th>3 X Tesla C1060</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mnist</td>
<td>60,000</td>
<td>780</td>
<td>203.82s</td>
<td>4</td>
<td>48.43s (4.21x)</td>
<td>19.39s (10.51x)</td>
</tr>
<tr>
<td>Covertype</td>
<td>581,012</td>
<td>54</td>
<td>54.21m</td>
<td>39</td>
<td>10.84m (5.00x)</td>
<td>3.62m (14.98x)</td>
</tr>
</tbody>
</table>

Value \(n \) is the number of data points. Value \(m \) is the size of feature space. Value \(c \) is the number of chunks. Time unit is second and minute. Speed up is related to CPU implementation.

...of them can be simply implemented using CUDA, some of these algorithm may not be able to fully utilize the power of GPU and they might be slower than the highly optimized versions using CPU. To achieve better performance, it is important to map the algorithm to the CUDA programming model and break down the problem to small pieces. Most classic sorting algorithms are covered in this section. However, only three major sorting algorithm are introduced to present the power of GPU. The first one is radix sort. It is part of the CUDA library. The detail of the implementation is given in [34]. An efficient merge sort is also introduced in the same paper. The second one is a modified insertion sort and the third one is a modified shell sort. They both have original implementations from the author and they are considerably fast for sorting arrays in certain scenarios. They compose part of the contribution for this dissertation. Because \(k \)-NNs search requires finding the indices of the nearest neighbors, all sorting algorithms discussed here sort with indices.

4.5.1 Sequential Sort

Sorting algorithms such as quick sort and merge sort are classified as comparison sort. Comparison sort are based on comparison operations for finding the correct order of
the input sequence. The time complexity $O(n \log n)$ is the best that comparison sorts can achieve in the worst case. However, sorting algorithms which are not comparison based are not limited by this lower bound. For example, counting sort and bucket sort both can perform linear time sorting. These sorting algorithms usually have certain restraints for the input sequence which make them less popular for solving general sorting problems.

Merge Sort

Merge sort uses the typical divide and conquer technique. The merge operation assumes two input sequences being in either ascending or descending order. It merges the two input sequences into one piece with the correct order. The complete input sequence is broken down to multiple pairs of one element sequence. Then all of these sequences are merged starting from the bottom. The algorithm sample code is shown below.

```cpp
template <class T>
void merge(T* array, int p, int r, int q) {
  T* newArray = new T[r - p + 1];
  int idx = 0;
  int i = p;
  int j = q;
  while (i <= q-1 || j <= r) {
    if (i == q) {
      newArray[idx++] = array[j++];
      continue;
    }
    if (j == r) {
      newArray[idx++] = array[i++];
      continue;
    }
    if (i <= q-1 && j <= r) {
      if (i == q) {
        newArray[idx++] = array[j++];
        continue;
      }
      if (j == r) {
        newArray[idx++] = array[i++];
        continue;
      }
    }
  }
}
```
if (array[i] < array[j]) {
 newArray[idx++] = array[i++];
} else {
 newArray[idx++] = array[j++];
}

}.
copy(newArray, newArray + (r - p + 1), array + p);
delete[] newArray;
}
template <class T>
void mergeSort(T* array, int p, int r) {
 if (p < 0 || r < 0) {
 return;
 }
 if (r <= p) {
 return;
 } else if (r - p == 1) {
 if (array[p] > array[r]) {
 swap(array[p], array[r]);
 }
 return;
 } else {
 int q = p + (int)floor((r - p + 1) / 2);
 mergeSort(array, p, q - 1);
 mergeSort(array, q, r);
 merge(array, p, r, q);
 }
}

The advantage of merge sort is the stable $O(n \log n)$ performance in both average case and the worst case. However, the disadvantages are the recursive operation and the extra temporary memory space taken. Unluckily, both of them are very critical for
utilizing GPU power. Therefore, merge sort is not deep researched in this dissertation.

Quick Sort

Quick sort is probably the most popular and beautiful sort in many applications. It is the default sorting implementation in C++ standard template library. It is also the built-in sorting algorithm for many other programming language such as Java and Matlab. Unlike merge sort, quick sort is an in place sorting algorithm which requires only constant temporary memory space. The drawback of quick sort is that it has a quadratic time complexity in the worst case. However, the worst case rarely happens. The sample code of quick sort is given below.

```cpp
template <class T>
int partition(T* array, int p, int r) {
    T pivot = array[r];
    int i = p - 1;
    for (int j = p; j < r; ++j) {
        if (array[j] <= pivot) {
            ++i;
            if (i != j)
                swap(array[i], array[j]);
        }
    }
    swap(array[i + 1], array[r]);
    return i + 1;
}
template <class T>
void quickSort(T* arr, int p, int r) {
    if (r == p)
        return;
    if (p < r) {
        int q = partition(arr, p, r);
```
quickSort(arr, p, q - 1);
quickSort(arr, q + 1, r);
}
}

Quick sort uses similar divide and conquer technique as merge sort does, which is the recursive operation. Therefore, quick sort is not considered as an efficient implementation candidate for GPU. The latest CUDA platform supports the recursive operations on the GPU which makes it possible to implement a faster GPU based quick sort. Some useful ideas can be found in [35].

Counting Sort

Counting sort is a typical non-comparison based sorting algorithm. It assumes the input sequences are integers in the range of 0 to k. When $k = O(n)$, counting sort has a linear complexity. Although counting sort has a simple form, it is used for composing the more advanced sorting algorithm such as radix sort. The sample implementation of counting sort is given below.

```c
void countingSort(const int* array, int* sortedArray,
                  int* cntArray, int length, int max) {
    for (int i = 0; i < max + 1; ++i) {
        cntArray[i] = 0;
    }
    for (int i = 0; i < length; ++i) {
        ++cntArray[array[i]];
    }
    for (int i = 1; i <= max; ++i) {
        cntArray[i] += cntArray[i - 1];
    }
    for (int i = length - 1; i >= 0; --i) { //stable
        sortedArray[cntArray[array[i]] - 1] = array[i];
```
The counting sort is introduced as an example to show that certain sorting algorithm with limitations can run in linear time. Due to its simplicity and restrictions, counting sort does not have any practical usage besides its introductory purpose.

4.5.2 Parallel Sort

Both merge sort and quick sort mentioned above have their own GPU implementation now. Various speed improvements are reported in [34] and [35]. The problem is finding the k-nearest neighbors in a distance matrix. This k value can be as small as 1 and as large as the order of the matrix. It indicates that the problem can be either a partial sorting case when k is less than the order of the matrix or a complete sorting case when k is equal to the order of the matrix. When it comes to partial sorting scenario, both insertion sort and selection sort outperforms other sorting algorithms. As an example, when $k = 1$, both insertion sort and selection sort performs a linear scan to find the smallest value. And it would make no sense to introduce the sorting algorithm and sort the complete sequence just for finding the smallest value. However, when k grows up to certain value, the inefficiencies of insertion sort and selection sort appear. The radix sort introduced below comes from the library which is good for sorting complete sequence. The modified insertion sort is introduced for sorting partial sequences. Selection sort has close performance compared to insertion sort, thus shell sort which is another interesting sorting algorithm is chosen for performance comparison.
Radix Sort

The most efficient sorting algorithm on GPU has been proven to be radix sort [34]. The classic radix sort sorts a sequence by its digits. It usually starts with the lowest digit and moves toward the highest digit. It uses counting sort or bucket sort to sort each digits. After performing the sort on all digits, the complete ordered sequence will be given. Radix sort implemented for GPU highly utilizes the hardware capability on floating point operations. The highlight point of radix sort is that it is extremely efficient on ultra long sequences, which is not the exact case of k-NNs search. K-NNs search sorts a distance matrix instead of vector. Therefore, the final output will be a k by number of sequences matrix containing k-nearest neighbors in each sequence. The length of these sequences is not very long. In the experimental test, loops are used for executing the radix sort on each sequence one by one.

Insertion Sort

The insertion sort looks for the k smallest keys and it only sorts part of the sequence. This becomes surprisingly efficient when k is small. However, it is very inefficient to sort the complete sequence since it has a time complexity of $O(n^2)$. The sequential insertion sort maintains a sorted sequence in the front of the input sequence. It scans through every element and insert it into the proper position in the sorted part. Thus, it has the time complexity of $O(kn)$ if it stops at the kth element. When k is small and not related to n, insertion sort can be considered as having the linear time complexity. The parallel version of insertion sort can be implemented in a way that each CUDA thread sorts one or more rows/columns in the distance matrix. Because the k-NNS is interested in the index of the data points, the sorting algorithm must sort the distance matrix while maintaining the correct order of the index matrix. Both the distance matrix and the index matrix are parsed into the routine. When any element in the
distance matrix is moved, the related element in the index matrix is moved similarly. The sorting procedure is divided into two steps. The first step sorts the first \(k \) keys. The second step scans through the rest part of keys. If a neighbor’s distance value is found bigger than the \(i \)-th neighbor’s distance value and smaller than the \(i + 1 \)-th neighbor’s distance value where \((i + 1) \leq k \), it shifts the sequence starting from \(i + 1 \)-th element to \(k \)-th element one position to the right. Then it puts that neighbor into the \(i + 1 \)-th position. In this way, it is not necessary to move all elements in the sequence which saves the device memory accessing time. There are at most \(k \) shifting operations in one insertion operation. When the routine terminates, the \(k \)-nearest neighbors will be placed into the first \(k \) positions in an ascending order.

4.5.3 Shell Sort

Another popular sorting algorithm is shell sort. It has an \(O(n \log^2 n) \) time complexity. It is not like insertion sort because it sorts the complete sequence. Its performance is slightly slower than radix sort on long sequences but it is faster for small distance matrices. Compared to the insertion sort, it is faster in general case when the \(k \) value is large enough. The increment sequence \([1 4 13 40 \ldots]\) is used in the shell sort because of its efficiency. The sorting mechanism is the same as insertion sort where each CUDA thread sorts one or more rows/columns and adjusts the index matrix at the same time.

4.5.4 Speed Comparison Test of Sorting Algorithms

Figure 4.6 and Figure 4.7 show the time efficiency of the above sorting algorithms by changing both \(k \) value and dimension of the distance matrix. The solid lines are fitting curves using the collected data. The fitting function is a Gaussian function
shown in
\[y = f(x) = ae^{-(\frac{x-b}{c})^2}, \] (4.14)
where \(a, b, c \) are coefficients. Figure 4.6 shows the time cost comparison for a small fixed \(k \) value \((k = 50)\). Insertion sort demonstrates the best performance among all sorting algorithms. Out of the two possible ways of insertion sort, sorting by row is slightly faster than sorting by column for small \(k \) value. It is opposite for shell sort algorithm on GPU because sorting column elements is significantly faster than sorting row elements. The radix sort comes in between shell sort and insertion sort.

In the second comparison test, shown in Figure 4.7, the dimension of the distance matrix is fixed at 10,000 by 10,000. In both insertion sort and shell sort, sorting by column outperforms sorting by row. This is expected considering the CUDA memory coalesce. Because both shell sort and radix sort sort the full sequence, they have a fixed performance regardless what \(k \) value is used. Insertion sort starts getting extremely slow when \(k \) is bigger than 120. In sum, insertion sort has better performance by doing partial sort for smaller \(k \) value whereas shell sort and radix sort have close performances on the medium size data sequence. Radix sort is the best choice to sort the very long sequence.

4.6 K-Nearest Neighbors Search using GPU

The brute force \(k \)-NNS is a combination of distance calculation and sorting. This is proven to be efficient for GPU implementation instead of using complex data structures such as Cover Tree [26]. The implementation introduced in [26] is referred as VG-KNN. The proposed GPUKNN method picks up different sorting algorithm depending on the input and \(k \) value. When \(k \) is smaller than 120, insertion sort is used. If \(k \) is 120 or bigger, the shell sort is used. This threshold is found under our
system configuration and it needs to be tuned for other system and application configurations. The radix sort is used when the sequence is very long. Table 4.6 shows the performance between CPU and GPU. Since comparisons between CPU and GPU have been made in [26], Matlab is used as a reference of CPU performance instead of using the fastest CPU k-NNs search algorithm. Comparison between VG-KNN and GPUKNN shows that GPUKNN is much better handling different size of input dataset and it supports simple usage of multi-GPU environment.
Figure 4.7: Speed performance comparison of sorting algorithms for various k and fixed matrix dimension.

Table 4.4: K-NNS performance comparison on MNIST (60,000 data points, 576 features).

<table>
<thead>
<tr>
<th>Processor</th>
<th>Method</th>
<th>$k = 50$</th>
<th>$k = 100$</th>
<th>$k = 500$</th>
<th>$k = 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xeon 4-core</td>
<td>Matlab-KNN</td>
<td>454.45s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tesla C1060</td>
<td>VG-KNN</td>
<td>59.06s</td>
<td>68.70s</td>
<td>352.95s</td>
<td>1088.93s</td>
</tr>
<tr>
<td>Tesla C1060</td>
<td>GPUKNN</td>
<td>54.02s</td>
<td>62.15s</td>
<td>152.42s</td>
<td></td>
</tr>
<tr>
<td>2 X Tesla C1060</td>
<td>GPUKNN</td>
<td>30.27s</td>
<td>35.81s</td>
<td>86.80s</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 5

Parallel Support Vector Machine Implementation Using GPUs

Chapter 5 starts with posing classification problem as the distribution-free learning implemented in SVM, which is based on the idea of maximizing the margin between the two classes. This setting converts the learning procedure into solving a QP problem with both linear inequality constraints and on linear equality constraint. The Hessian matrix of the QP problem for an SVM is dense and usually badly conditioned. In addition, it scales with the number of data and such problems cannot be solved by standard off-shelves QP solvers. It is more efficient to solve such problems by using decomposition approaches. Sequential Minimal Optimization (SMO) is one popular approach developed by Platt [7]. It has been proven to be very successful in solving QP problem. Keerthi et al. [8] developed an improved version of SMO. Cao et al. [15] continued the research and developed the parallel SMO which is the fundamental of the proposed GPUSVM.
5.1 Two-Class SVM

SVMs are constructive algorithms of statistical learning theory developed by Vapnik and Chervonenkis in late 1960s and early 1970s [3]. They have been developed in present form as the L_1 SVMs by Vapnik and Cortes [36]. SVM and its variants, a.k.a. kernel-based methods, have been studied extensively and applied to various pattern classification (making predictions) and regression (curve fitting) problems. Training a classifier requires maximizing the classification accuracy on the training dataset. However, if a classifier is too fit for the training dataset, it might lose the classification capability for unknown datasets. This is usually called overfitting. There is a trade off between the generalization ability and fitting the training dataset. Two-class nonlinear SVM is trained in a way that the original input space is mapped to a higher dimensional feature space by the so called kernel functions and the quadratic programming problem is then solved by finding the optimal separation hyperplane which separates the two classes. SVM usually controls the overfitting issue better than other machine learning tools. In general, SVM is a supervised learning algorithm that infers a function which takes new examples as input and produces predicted labels as output from a set of known labeled examples. As such the output of the algorithm is a mathematical function that is defined on the space from which our examples are taken, and takes on one of two values at all points in the space, corresponding to the two class labels that are considered in binary classification. The standard derivation of the SVM begins with possibly the simplest class of decision function: linear function.

5.1.1 Hard-Margin SVM

Hard-margin SVM forms a hyperplane that separates a set of data points with label “+1” from a set of data points with label “-1” using the maximum margin. The
The output of a training data point \vec{x}_i can be computed by

$$o(\vec{x}_i) = \vec{w}^T \vec{x}_i + b,$$ \hspace{1cm} (5.1)

where \vec{w} is the normal vector to the separation hyperplane and \vec{x}_i is a training data point. The term b is called a bias. In the case of linearly separable dataset, no training data point satisfies $o(\vec{x}_i) = 0$. Thus, to control separability, the following inequalities

$$\vec{w}^T \vec{x}_i + b = \begin{cases}
\geq 1 & \text{for } y_i = 1; \\
\leq -1 & \text{for } y_i = -1
\end{cases}$$
are used. They are equivalent to

\[y_i(\vec{w}^T \vec{x}_i + b) \geq 1. \] \hspace{1cm} (5.2)

All hyperplanes which satisfy

\[o(\vec{x}_i) = \vec{w}^T \vec{x}_i + b = c \quad \forall c : -1 < c < 1 \] \hspace{1cm} (5.3)

can separate the dataset correctly. They are called feasible solutions. When \(c = 0 \), the hyperplane is in the middle of two hyperplanes with \(c = -1 \) and \(c = 1 \). The margin is defined as the distance, multiplied by 2, from a hyperplane to its nearest positive and negative points. The margin \(m \) can be calculated by

\[m = \frac{2}{\|\vec{w}\|}. \] \hspace{1cm} (5.4)

A hyperplane is considered as optimal if it is a feasible solution and it has the maximum margin. Equation 5.4 shows that the maximum margin can be found when the Euclidean norm of \(\vec{w} \), which satisfies Equation 5.2, is minimized. The following optimization problem

\[
\min_{\vec{w}} \frac{1}{2}\|\vec{w}\|,
\text{ s.t. } \forall i : y_i(\vec{w}^T \vec{x}_i + b) \geq 1 \] \hspace{1cm} (5.5)

can be formulated to find the optimal hyperplane. \(\vec{x}_i \) is the \(i \)th training data point, and \(y_i \) is the corresponding label of \(\vec{x}_i \). The value of \(y_i \) is either +1 or −1. This
optimization problem can be transformed to a dual form
\[
\min_{\vec{\alpha}} L_d(\vec{\alpha}) = \min_{\vec{\alpha}} \left(\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j (\vec{x}_i^T \vec{x}_j) \alpha_i \alpha_j - \sum_{i=1}^{n} \alpha_i \right),
\]
subject to \(\forall i: \alpha_i \geq 0 \) and \(\sum_{i=1}^{n} y_i \alpha_i = 0 \) (5.6)

using Lagrangian multipliers. It is a quadratic programming problem where the objective function \(L_d \) solely depends on Lagrangian multipliers \(\vec{\alpha} \). The value of \(n \) is the total number of training data points. There is an one-to-one relationship between each Lagrangian multiplier and each training data point. Those training data points whose \(\alpha \) is bigger than zero are referred as support vectors. \(S \) describes the set which contains all support vectors. Once the QP problem is solved and the \(\vec{\alpha} \) is found, the normal vector \(\vec{w} \) and the bias \(b \) can be computed by
\[
\vec{w} = \sum_{i: \vec{x}_i \in S} y_i \alpha_i \vec{x}_i \quad (5.7)
\]
and
\[
b = \frac{1}{|S|} \sum_{i: \vec{x}_i \in S} (y_i - \vec{w}^T \vec{x}_i). \quad (5.8)
\]

The classification function uses the following \(sgn \) function
\[
d(\vec{x}) = sgn(o(\vec{x})) = sgn(\vec{w}^T \vec{x} + b), \quad (5.9)
\]
\[
d(\vec{x}) = \begin{cases} +1 & \Rightarrow \vec{x} \in \text{Positive Class}; \\ -1 & \Rightarrow \vec{x} \in \text{Negative Class}, \end{cases}
\]
which assigns the correct label to an input query.

5.1.2 \textit{L1 Soft-Margin SVM}

In hard-margin SVM, the training dataset is known as linearly separable. However, most datasets collected from the real-world problems are linearly inseparable. There is obviously no feasible solution which can separate the positive data points from the negative data points without errors. Thus the hard-margin SVM cannot be used here. In order to make SVM functional for overlapped datasets, Cortes \cite{36} proposed an extension to the Equation 5.5 by adding a set of slack variables ζ_i, which allows certain degree of misclassifications. This is shown in

\[
\begin{align*}
\min_{\vec{w}, \zeta} & \frac{1}{2}\|\vec{w}\|^2 + C \sum_{i=1}^{n} \zeta_i, \\
\text{s.t.} & \, \forall i : y_i(\vec{w}^T \vec{x}_i + b) \geq 1 - \zeta_i,
\end{align*}
\]

(5.10)

where ζ_i permits some potential misclassifications. This is known as a soft-margin SVM, more precisely \textit{L1 soft-margin SVM} in the above formulation. The penalty parameter C determines the trade off between the maximization of the margin and the minimization of the misclassification. The dual form of the \textit{L1 soft-margin SVM} optimization problem is as follows

\[
\begin{align*}
\min_{\vec{\alpha}} L_d(\vec{\alpha}) &= \min_{\vec{\alpha}} \left(\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j (\vec{x}_i^T \vec{x}_j) \alpha_i \alpha_j - \sum_{i=1}^{n} \alpha_i \right), \\
\text{s.t.} & \, \forall i : 0 \leq \alpha_i \leq C \quad \text{and} \quad \sum_{i=1}^{n} y_i \alpha_i = 0.
\end{align*}
\]

(5.11)

The difference between Equation 5.6 and Equation 5.11 is that the Lagrangian multipliers α_i now have an upper bound. The original constraint becomes a box constraint in \textit{L1 soft-margin SVM} shown in Equation 5.11.

In order to guarantee the existence of an optimal solution for a positive definite QP problem, the Karush-Kuhn-Tucker (KKT) conditions should be satisfied. The
KKT conditions for the QP problem described in Equation 5.11 are met when

\[
\forall i : \alpha_i (y_i o(\vec{x}_i) - 1 + \zeta_i) = 0,
\]

\[
(C - \alpha_i)\zeta_i = 0,
\]

\[
\alpha_i \geq 0, \quad \zeta_i \geq 0.
\]

(5.12)

There are three different cases for \(\alpha_i \):

1. \(\alpha_i = 0 \). Then \(\zeta_i = 0 \). Thus \(\vec{x}_i \) is correctly classified.

2. \(0 < \alpha_i < C \). Then \(y_i o(\vec{x}_i) - 1 + \zeta_i = 0 \) and \(\zeta_i = 0 \). Therefore, \(y_i o(\vec{x}_i) = 1 \) and \(\vec{x}_i \) is called unbounded support vector. Denote set \(U \) containing all unbounded support vectors.

3. \(\alpha_i = C \). Then \(y_i o(\vec{x}_i) - 1 + \zeta_i = 0 \) and \(\zeta_i \geq 0 \). Thus, \(\vec{x}_i \) is called bounded support vector. If \(0 \leq \zeta_i \leq 1 \), \(\vec{x}_i \) is correctly classified. If \(\zeta_i \geq 1 \), \(\vec{x}_i \) is misclassified.

Denote set \(B \) containing all bounded support vectors such that \(U \cup B = S \), where set \(S \) contains all support vectors.

After the Lagrangian multipliers are found, the bias term \(b \) is averaged over all unbounded support vectors by

\[
b = \frac{1}{|U|} \sum_{i: \vec{x}_i \in U} (y_i - \sum_{j: \vec{x}_j \in S} \alpha_j y_j (\vec{x}_j^T \vec{x}_i)) \quad (5.13)
\]

An input query can be classified using

\[
o(\vec{x}) = \sum_{i: \vec{x}_i \in S} \alpha_i y_i (\vec{x}_i^T \vec{x}) + b, \quad (5.14)
\]

\[
d(\vec{x}) = \text{sgn}(o(\vec{x})). \quad (5.15)
\]
5.1.3 Nonlinear SVM

The optimal hyperplane found in a soft-margin SVM can classify overlapped datasets with certain degree of tolerance on misclassifications. The outcome might not be as good as what people expect. To further improve the classification accuracy of soft-margin SVM, the original input feature space can be mapped to a new feature space which has a much higher dimensionality. The mapping is done through some nonlinear functions, a.k.a. kernel functions. The dual form of the nonlinear SVM is very similar to Equation 5.11. It is shown in

\[
\min_{\vec{\alpha}} L_d(\vec{\alpha}) = \min_{\vec{\alpha}} \left(\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j K(\vec{x}_i, \vec{x}_j) \alpha_i \alpha_j - \sum_{i=1}^{n} \alpha_i \right),
\]

s.t. \(\forall i: 0 \leq \alpha_i \leq C \) and \(\sum_{i=1}^{n} y_i \alpha_i = 0. \) \hspace{1cm} (5.16)

The kernel function maps the original input feature space to a higher dimensional dot-product space. Several popular kernel functions are listed in Table 5.1. The bias term \(b \) can be computed by

\[
b = \frac{1}{|U|} \sum_{i: \vec{x}_i \in U} (y_i - \sum_{j: \vec{x}_j \in S} \alpha_j y_j K(\vec{x}_j, \vec{x}_i)). \quad (5.17)
\]

<table>
<thead>
<tr>
<th>Type of Classifier</th>
<th>Kernel Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Kernel</td>
<td>(K(\vec{x}_i, \vec{x}_j) = \vec{x}_i^T \vec{x}_j)</td>
</tr>
<tr>
<td>Polynomial Kernel</td>
<td>(K(\vec{x}_i, \vec{x}_j) = (\vec{x}_i^T \vec{x}_j + 1)^d)</td>
</tr>
<tr>
<td>Radial Basis Kernel</td>
<td>(K(\vec{x}_i, \vec{x}_j) = e^{-\gamma |\vec{x}_i - \vec{x}_j|^2}, \gamma = \frac{1}{2\sigma^2})</td>
</tr>
</tbody>
</table>
And the classification function is

\[d(\vec{x}) = \text{sgn}(\sum_{i: \vec{x}_i \in S} \alpha_i y_i K(\vec{x}_i, \vec{x}) + b). \] (5.18)

5.2 Multiclass SVM

Support vector machines are formulated to solve two-class problems. Because SVMs employ direct decision functions, it is not straightforward to generalize and extend the SVM to solve multiclass classification problems directly. Crammer et al. proposed a direct method to solve the multiclass classification task in [37]. The direct multiclass SVM solver is not very popular due to its numeric complexity. However, a multiclass classification problem can be broken down to several two-class problems which are solvable by SVM.

5.2.1 One-Versus-All

An \(n \)-class \((n \geq 3)\) problem can be converted to \(n \) two-class problems. In each of these two-class problems, one class is marked with positive label “+1” and the rest classes are combined together and marked with negative label “-1”. This method is commonly known as One-Versus-All (OVA) or One-Against-ALL. However, this method raises a problem that some regions will be left unclassified whereas some other regions will be claimed by more than one class. In Figure 5.2, Region 2 is an unclassified region and Region 1 are claimed by both Class 1 and Class 2. To address this issue, Winner-Takes-All strategy is used. The query point is classified using all classifiers. The outputs of each binary classifier are not processed by \(\text{sgn} \) function. Instead, they are compared with each other and the classifier which gives the biggest output value will assign its own class label to the query point. The result of such a classification is shown in Figure 5.3.
5.2.2 One-Versus-One

One-Versus-One (OVO) is originally proposed by Kreßel in [38]. He converts the n-class problem to $n(n - 1)/2$ binary class problems, which cover all pair of classes. However this method still has the unclassified region issue similar in OVA. The common way to address this issue is using Max-Wins voting strategy. Decision tree can also be utilized to address this issue. The advantages and disadvantages between OVA and OVO and their performance accuracies are discussed in [39]. LIBSVM uses OVO described in [40] and the proposed GPUSVM in this dissertation uses OVA due to its accurate performance and implementation simplicity.
5.2.3 Comparison between OVA and OVO

GPUSVM uses OVA for solving the multi-class classification problems due to its mathematical simplicity as well as the simplicity of the implementation on CUDA platform. Rifkin et al. points out that OVA is as accurate as other approaches such as OVO or direct SVM solution for multi-class problems in [41]. Furthermore, OVA uses all training examples of the input dataset compared to OVO which only uses a portion of it in each binary class problem. Considering the speed improvement, GPU can benefit more from the larger size of the training problems.

5.3 N-Fold Cross Validation

N-fold cross-validation is a mean to measure the generalization error of classifiers for a limited number of gathered data. The input dataset is partitioned into n folds.
It is recommended to shuffle the dataset so that the data points from all classes are uniformly distributed in every fold. During the training phase, one fold is used as the testing dataset whereas the rest of data are used as the training dataset. The training procedure is repeated n times. All misclassified data points are accumulated to compute the final accuracy. The complete cross-validation training is repeated for every set of different training parameters to determine the most proper training parameters for the input dataset. This set of training parameters are used for training the complete dataset and generating the final model. A Leave-One-Out (LOO) is a special case of cross-validation. In LOO, one data point is used for testing purpose and all other data points are used for training. The procedure is repeated for every data point. This gives an unbiased estimate for test error. In general, N-fold cross-validation is a very time consuming task. GPUSVM can utilize the multi-GPU for cross-validation, which is implemented in this dissertation.

5.4 Platt’s SMO

The QP problem described in Equation 5.16 can be solved by the well known Sequential Minimal Optimization algorithm originally proposed by Platt [7] and later improved by Keerthi et al. [8]. Cao et al. proposed a parallel SMO using Message Passing Interface in [15] to accelerate the training procedure. The GPU based implementation of Parallel SMO introduced in [17] and [18] are also becoming more and more popular. In the following part, SMO methods will be explained and one of the most efficient parallel SMO implementation of using multi-threading and multi-GPU will be introduced.

There are several standard techniques to solve the QP problems. If there is no inequality constraint, the QP problem for the so called $L1$ SVM can be solved equivalently by solving a system of linear equations, e.g. Least-Square SVM. Otherwise,
methods such as Active Set and SMO can be used. The original SMO is proposed by Platt and implemented in [7]. SMO does not need extra matrix storage nor numerical QP optimization steps since it decomposes the overall QP into small QP subproblems, using Osuna’s theorem [5].

SMO chooses to solve the smallest possible QP at each step, which involves two Lagrangian multipliers because of the linear equality constraint. At each step, two Lagrangian multipliers will be chosen jointly for optimization to update the SVM and reflect the new optimal values. The advantage of this is that it can be done analytically. In addition, SMO does not use any matrix operations which avoids the cost of large memory space and it is less susceptible to numerical precision issues. Two major parts of SMO are the analytic method for solving QP of two Lagrangian multipliers and the heuristic for choosing which two Lagrangian multipliers to optimize.

![Figure 5.4: A graphic representation when both Lagrangian multipliers fulfill the constraints.](image)
The box constraint makes both Lagrangian multipliers lie in the box and the equality constraint makes them lie on a diagonal line in the box as shown in Figure 5.4.

1. When \(y_1 \neq y_2 \), \(\alpha_1 - \alpha_2 + k = 0 \). The bounds are \(L = \max(0, \alpha_1 - \alpha_2) \) and \(H = \min(C, C + \alpha_1 - \alpha_2) \).

2. When \(y_1 = y_2 \), \(\alpha_1 + \alpha_2 + k = 0 \). The bounds are \(L = \max(0, \alpha_1 + \alpha_2 - C) \) and \(H = \min(C, \alpha_1 + \alpha_2) \).

Starting from the second Lagrangian multiplier \(\alpha_2 \) and \(s = y_1 y_2 \), \(\alpha_1 \) can be expressed in terms of \(\alpha_2 \) using

\[
\alpha_1 = s\alpha_2 + k',
\]

and the objective function is reduced to

\[
\min_{\alpha_1, \alpha_2} L_d(\alpha_1, \alpha_2) = \min_{\alpha_1, \alpha_2} \frac{1}{2} (K(\vec{x}_1, \vec{x}_1)\alpha_1^2 + sK(\vec{x}_1, \vec{x}_2)\alpha_1\alpha_2 + K(\vec{x}_2, \vec{x}_2)\alpha_2^2) - (\alpha_1 + \alpha_2).
\]

(5.20)

Plug Equation 5.19 into Equation 5.20 and compute the second derivative

\[
\eta = K(\vec{x}_1, \vec{x}_1) + K(\vec{x}_2, \vec{x}_2) - 2K(\vec{x}_1, \vec{x}_2).
\]

(5.21)

The objective function is positive definite in normal scenario and a minimum exists along the direction of the linear equality constraint. \(\eta \) is greater than zero. Define the error function \(e_i = \sum_{j=1}^{n} \alpha_j y_j K(\vec{x}_j, \vec{x}_i) - y_i \), thus the updated \(\alpha_2^{\text{new}} \) can be calculated along the diagonal line by

\[
\alpha_2^{\text{new}} = \alpha_2 + \frac{y_2(e_1 - e_2)}{\eta}.
\]

(5.22)
The constraint minimum can be found by clipping to the end of the line segment:

\[
\alpha_2^{\text{new}} = \begin{cases}
H & \text{if } \alpha_2^{\text{new}} \geq H; \\
\alpha_2^{\text{new}} & \text{if } L \leq \alpha_2^{\text{new}} \leq H; \\
L & \text{if } \alpha_2^{\text{new}} \leq L.
\end{cases}
\]

The updated \(\alpha_1^{\text{new}} \) is computed from \(\alpha_2^{\text{new}} \) by

\[
\alpha_1^{\text{new}} = \alpha_1 + s(\alpha_2 - \alpha_2^{\text{new}}).
\] (5.23)

Under some rare scenarios, the \(\eta \) could be non-positive value. When \(\eta < 0 \), it means the kernel \(K \) does not obey Mercer’s condition which causes the objective function to become indefinite. A zero \(\eta \) can occur even with the correct kernel, if the input training dataset has duplicate data points. Both of these two situations can be solved by evaluating the objective function at each end of the line segment. The \(\alpha_2^{\text{new}} \) is computed by

\[
\text{slope} = y_2(e_1 - e_2),
\] (5.24)

\[
\text{change} = \text{slope}(H - L),
\] (5.25)

\[
\alpha_2^{\text{new}} = \begin{cases}
H & \text{if } |\text{change}| > 0 \text{ and } \text{slope} > 0; \\
L & \text{if } |\text{change}| > 0 \text{ and } \text{slope} < 0; \\
\alpha_2 & \text{if } |\text{change}| < 0
\end{cases}
\]

And \(\alpha_1^{\text{new}} \) is computed by Equation 5.23.

SMO moves the Lagrangian multipliers to the end point which has the lowest value of objective function. If the objective function is the same at both ends then SMO cannot make progress. When this is happening, two heuristics are utilized to choose the new Lagrangian multipliers. As long as two multipliers are altered at each step
and at least one of them violates the KKT conditions, then the value of the objective function will be decreased according to Osuna's theorem [5]. Therefore, convergence is guaranteed. Two heuristics are used in order to speed up the convergence. One is for how to choose the first multiplier and the other one is for how to choose the second multiplier. The first multiplier is chosen by the following rules:

1. Loop through α, $\forall 0 < \alpha_i < C$, if $\exists \alpha_i$ violates KKT within ϵ, then choose α_i;

2. Loop through α, $\forall 1 \leq i \leq n$, if $\exists \alpha_i$ violates KKT within ϵ, then choose α_i.

The search for the first multiplier starts with a single pass using Rule 2, then it runs multiple passes using Rule 1 until Rule 1 fails. It continues switching between Rule 1 and Rule 2. The KKT condition is checked within ϵ of fulfillment and the typical value is set to 0.001. This value has high impact on the speed of the convergence. The smaller it is, the slower the convergence goes. The second multiplier is chosen to maximize the joint optimization. However the cost of evaluating the kernel function is high, the step size is approximated by using $|e_1 - e_2|$. So if e_1 is positive, the smallest e_2 is chosen; if e_1 is negative, the biggest e_2 is chosen. All these errors of non-bounded examples can be stored in a cache for the sake of algorithm performance. It is possible that the second multiplier chosen cannot make positive progress. When this happens, three rules are used:

1. Loop through α, $\forall 0 < \alpha_i < C$, check if $\exists \alpha_i$ can make positive progress;

2. Loop through α, $\forall 1 \leq i \leq n$, check if $\exists \alpha_i$ can make positive progress;

3. Skip the first chosen multiplier and continue.

Starting from the rule 1, if it fails then rule 2 is applied. If rule 2 fails again then rule 3 is applied. The value of bias b is evaluated in each step so that the KKT conditions
are fulfilled for both optimized examples. The following equations are used.

\[
b_1 = e_1 + y_1(\alpha_{1}^{\text{new}} - \alpha_1)K(\vec{x}_1, \vec{x}_1) + y_2(\alpha_{2}^{\text{new}} - \alpha_2)K(\vec{x}_1, \vec{x}_2) + b; \quad (5.26)
\]

\[
b_2 = e_2 + y_1(\alpha_{1}^{\text{new}} - \alpha_1)K(\vec{x}_1, \vec{x}_2) + y_2(\alpha_{2}^{\text{new}} - \alpha_2)K(\vec{x}_2, \vec{x}_2) + b \quad (5.27)
\]

If both \(\alpha_1\) and \(\alpha_2\) are not at bounds, \(b_1\) and \(b_2\) are valid and equal. When both Lagrangian multipliers are at bound and \(L \neq H\), any value between \(b_1\) and \(b_2\) will meet the KKT conditions and SMO chooses \(b = (b_1 + b_2)/2\).

5.5 Keerthi’s SMO

An improved version of SMO is proposed by Keerthi et al. and it is more efficient on speeding up the convergence compared to Platt’s SMO. The earlier versions LIBSVM tool is partially based on this idea. The later implementations of LIBSVM uses working set technique with second order heuristic shown in [9].

Define the following index sets at a given \(\alpha\) and \(y\):

\[
I_0 = \{i : 0 < \alpha_i < C\},
\]

\[
I_1 = \{i : y_i = 1, \alpha_i = 0\},
\]

\[
I_2 = \{i : y_i = -1, \alpha_i = C\},
\]

\[
I_3 = \{i : y_i = 1, \alpha_i = C\},
\]

\[
I_4 = \{i : y_i = -1, \alpha_i = 0\},
\]

\[
I_{up} = I_0 \cup I_1 \cup I_2,
\]

\[
I_{lo} = I_0 \cup I_3 \cup I_4.
\]
The KKT conditions can be rewritten as

\[\forall i \in I_{up} : b \leq e_i, \]
\[\forall i \in I_{lo} : b \geq e_i, \]

where

\[e_i = \sum_{j \bar{x}_j \in S} \alpha_j y_j K(\bar{x}_j, \bar{x}_i) - y_i, \] \hspace{1cm} (5.28)

thus the KKT conditions will hold if and only if

\[b_{up} = \min \{ e_i : i \in I_{up} \}, \]
\[b_{lo} = \max \{ e_i : i \in I_{lo} \}, \]
\[b_{lo} \leq b_{up}. \] \hspace{1cm} (5.29)

An index pair \((i, j)\) violates the KKT condition if

\[i \in I_{lo}, j \in I_{up} \text{ and } e_i > e_j, \] \hspace{1cm} (5.30)

thus the objective is eliminating all \((i, j)\) pairs which violate the KKT condition. However, it is usually not possible to achieve the exact optimality conditions. Thus, it is necessary to define the approximate optimality conditions. This is shown in the following equation:

\[b_{lo} \leq b_{up} + 2\tau, \] \hspace{1cm} (5.31)

where \(\tau\) is a positive tolerance parameter. It is usually set to 0.001 for general applications recommended in [7]. The bias value can be computed by

\[b = \frac{b_{lo} + b_{up}}{2}. \] \hspace{1cm} (5.32)
In each iteration of the training phase, the α values are updated by

$$s = y_{up}y_{lo},$$

$$\eta = K(\vec{x}_{lo}, \vec{x}_{lo}) + K(\vec{x}_{up}, \vec{x}_{up}) - 2K(\vec{x}_{lo}, \vec{x}_{up}),$$

$$\alpha_{up}^{new} = \alpha_{up} + \frac{y_{up}(\epsilon_{lo} - \epsilon_{up})}{\eta},$$

$$\alpha_{lo}^{new} = \alpha_{lo} + s(\alpha_{up} - \alpha_{up}^{new}).$$

After new α values are computed, the error vector for all training data must be updated by

$$\epsilon_{i}^{new} = \epsilon_{i} + (\alpha_{lo}^{new} - \alpha_{lo})y_{lo}K(\vec{x}_{lo}, \vec{x}_{i}) + (\alpha_{up}^{new} - \alpha_{up})y_{up}K(\vec{x}_{up}, \vec{x}_{i}).$$

Most kernel values are cached in the GPU device memory, which depends upon the available memory space. In general, the larger the device memory is, the better the performance should be.

5.6 Parallel SMO Using Clusters

One practical and efficient parallel implementation of SMO is proposed by Cao et al. in [15]. This is a very fundamental idea of how to distribute the computations to multiple machines. The complete training dataset is broken down to k subsets. Each of these subsets are processed by one single machine. In each iteration, every slave node updates the error ϵ_{i}^{k} and computes the local version of $b_{up}^{k}, b_{lo}^{k}, I_{up}^{k}, I_{lo}^{k}$. Then the master node collects the results and computes the global $b_{up}, b_{lo}, I_{up}, I_{lo}$. It updates the α_{up}, α_{lo} and continues to the next iteration. Cao et al. claims that 90%
of the total computation time of the sequential SMO is used for updating e_i^k. Thus, this approach can quickly gain speed improvement by distributing the operation to multiple slave nodes. Besides, the reduction technique can be used for accelerating the procedure of finding global $b_{up}, b_{lo}, I_{up}, I_{lo}$. Detailed algorithm pseudo code and experimental results can be found in [15].

5.7 Parallel SMO Using GPU

The GPUSVM package developed in this dissertation uses a similar parallel SMO implementation which adapts Cao et al.’s idea as well as it improves the speed performance by encapsulating both data level parallelism and task level parallelism in GPU computing.

5.7.1 Kernel Computation

Three different kernels are implemented including linear, radial basis function and polynomial which are described in Section 5.1.3. The computations of the linear and polynomial kernel are straightforward by using theses equations

\begin{align}
K(\bar{x}_i, \bar{x}_j) &= \bar{x}_i^T \bar{x}_j, \\
K(\bar{x}_i, \bar{x}_j) &= (\bar{x}_i^T \bar{x}_j + 1)^d.
\end{align}

Radial basis function kernel can be optimized as

\begin{align}
K(\bar{x}_i, \bar{x}_j) &= e^{-\gamma \|\bar{x}_i - \bar{x}_j\|^2} \\
&= e^{-\gamma (\bar{x}_i^T \bar{x}_j + \bar{x}_j^T \bar{x}_i - 2\bar{x}_i^T \bar{x}_j)}.
\end{align}
Since kernel values are always computed from one support vector to all data points, matrix-vector multiplication can be used for calculating the value of $\vec{x}_i^T \vec{x}_j$. This step takes a great portion of time in the total training. A bad design of algorithm could spend more than 90% of time on calculating kernel values. It is known that error vector must be recomputed by using newly found support vectors which leads to the computation of kernel values. Thus if the kernel matrix has been precomputed, then it is only necessary to fetch the data from the memory. However, not all support vectors used will appear as the final support vectors after training. Every data point has a certain chance to become support vector during the training. Assuming a dataset with 50,000 training samples, the complete kernel matrix requires approximately 9.3GB storage in single floating points. It might be feasible on some workstations with large memory, but there is no single GPU device which has this type of capacity in device memory. Besides, it would make no sense to compute the complete kernel matrix since some of the data points will never appear as support vectors. Therefore, maintaining a submatrix of the complete kernel matrix in memory is the best strategy. During the training procedure, the most recently used support vectors are more likely to appear again in the later iterations [18]. For multiclass classification, support vectors are more likely to be shared among different tasks [18]. This could also be true in n-fold cross-validation. Although the training parameters vary, the support vectors are likely to stay the same. The Least-Recently-Used (LRU) list is the best data structure to implement the cache in order to take the above advantages.

5.7.2 Cache Design

Cache is designed for minimizing the number of computations for the kernel functions. There are two layers in the cache shown in Figure 5.5. They are the abstract layer and the physical layer. The abstract layer is used as a programming interface to maintain
the LRU list which is on the CPU side. The physical layer is the GPU device memory layout. A 2D array referred to as cache array on the GPU device is used as the storage of kernel matrix. Each row stores a kernel vector containing kernel values from one support vector to all data points. Thus the number of columns is fixed to the number of all data points and the number of rows is the size of the cache, which depends upon the available memory on the GPU device. The abstract layer contains a vector of nodes and a LRU list. Each nodes includes information about status, location and lrulistpos. The abstract contains a vector of nodes and these nodes have the following structure:

```cpp
class node{
public:
    enum {OUT, IN};
    int status;
    int location;
    std::list<int>::iterator lrulistpos;
}
```

![Figure 5.5: The design structure for cache.](image)

Figure 5.5: The design structure for cache.
Each node represents a data point, \textit{status} indicates whether the node is in the LRU list; \textit{location} stores the row number of cache array on the GPU device; \textit{lrulistpos} stores the position of the node in the LRU list. The LRU list has the same size as the cache. There are two different scenarios of doing operations on the cache:

1. The new support vector is in the cache. If \textit{lrulistpos} points at the head of LRU list, do nothing and return its \textit{location}. If not, remove it from the LRU list and append it back to the head of LRU list. Update its \textit{lrulistpos} and return its \textit{location}. The GPU fetches the kernel vector from the \textit{location} directly.

2. The new support vector is not in the cache.

 (a) If the cache is not full, append the new support vector at the head of the LRU list and update its \textit{lrulistpos}. Increase the size of the LRU list by 1 and set the new support vector’s \textit{location} to the value of LRU list’s size after the increment. Set its \textit{status} to \textit{IN}, return its \textit{location} and ask for kernel computation. The GPU computes the kernel vector and stores it in the \textit{location} on the GPU device memory. This operation overwrites a blank space.

 (b) If the cache is full, retrieve the support vector from the end of the LRU list and assign its \textit{location} value to the new support vector’s \textit{location}. Set the expired support vector’s \textit{status} to \textit{OUT}. Remove the expired support vector from the LRU list and append the new support vector at the head of the LRU list. Update the \textit{lrulistpos} of the new support vector and set its \textit{status} to \textit{IN}. Return its \textit{location} and ask for the kernel computations.
The GPU computes the kernel vector and stores it in the location on the GPU device memory. This operation overwrites the memory space used by the expired support vector.

By carrying out the above operations, the most recently used support vector will always appear at the head of the LRU list. Whenever the cache is full, the erased point is always the least recently used support vector. This cache design minimizes the unnecessary kernel computations within one single binary task as well as multitask cross-validation. If the cache size is large enough, kernel vectors of all support vectors appeared during training are only computed once.

5.7.3 GPU Acceleration

To maximize the performance of GPUs, the core consideration is about how to map the computations to the CUDA programming model. This includes two parts. The first part is data level parallelism and the second part is task level parallelism.

Data Level Parallelism

Data level parallelism is considered within one single binary classification task. Algorithm 3 shows the procedure of doing one binary classification task.

<table>
<thead>
<tr>
<th>Algorithm 3</th>
<th>Parallel SMO using CUDA for one binary task.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_i = 0, e_i^p = -y_i$ (device)</td>
<td>compute $b_{up}^p, b_{lo}^p, i_{up}^p, i_{lo}^p$ (device)</td>
</tr>
<tr>
<td>compute $b_{up}, b_{lo}, i_{up}, i_{lo}$ (host)</td>
<td>while $b_{lo} > b_{up} + 2\tau$ do</td>
</tr>
<tr>
<td>obtain $k_{i_{lo},i_{lo}}, k_{i_{up},i_{up}}, k_{i_{lo},i_{up}}$ (device)</td>
<td>update $\alpha_{i_{up}}, \alpha_{i_{lo}}$ (device)</td>
</tr>
<tr>
<td>compute $b_{up}^p, b_{lo}^p, i_{up}^p, i_{lo}^p$ (device)</td>
<td>compute $b_{up}, b_{lo}, i_{up}, i_{lo}$ (host)</td>
</tr>
<tr>
<td>end while</td>
<td>return α_i</td>
</tr>
</tbody>
</table>
The training sample is split into \(P \) subsets, which are mapped to \(P \) blocks on the GPU. The initialization of \(\alpha_i \) and \(e^p_i \) are done on the device. After the initialization, each block computes their local \(b^p_{up}, b^p_{lo}, I^p_{up}, I^p_{lo} \) using reduction technique. Then the global \(b_{up}, b_{lo}, I_{up}, I_{lo} \) is computed on CPU. Notice that these global values can also be computed on the GPU using single block structure, but it is much more efficient to do it using CPU because of its small scale. Then the algorithm proceeds to the \textit{while} loop. Each while loop is one iteration to minimize the objective function and the optimality condition is set the same as the sequential algorithm. Although the \textit{update} \(\alpha \) function is executed on GPU, there is no parallelism when doing only one binary classification. The \textit{obtain} kernel value function takes the most of the time when the kernel values are not cached in the memory. GPU computes the missed kernel value and saves it in the cache. This is the core acceleration part of the whole algorithm.

\textbf{Task Level Parallelism}

The kernel computations are expensive in terms of time cost, which has been mentioned before. Even the simplest linear kernel requires a matrix-vector multiplication for each support vector. On the other hand, it is unwise and impossible to compute the complete kernel matrix in advance, because the order of the square kernel matrix is equal to the total number of training samples. There is neither enough memory space for storing the complete kernel matrix in general, nor will all training samples become support vectors. Many SVM applications tend to compute the kernel values during the training and store a portion of complete kernel matrix in the system memory for later access. They do cross-validation as independent tasks one by one in a sequential manner as shown in the upper part of Figure 5.6. In this way, when each training task is completed, its cached kernel values are removed from the memory. This causes duplicated kernel computations across different tasks for different hyper-
parameters. Figure 5.7 shows a binary SVM problem trained with different C. The dataset used is an artificial dataset which has two overlapped classes with normal distribution. The linear kernel is used in this example and the penalty value C is the only hyperparameter. It is easy to observe from the figure that all four tasks with different C values share certain support vectors. These shared support vectors are shown in Figure 5.8. The kernel computations for these shared support vectors are redundant and calculated at least four times in total assuming they are all cached in the memory. The more C values are used for training the same dataset, the more duplicated kernel computations are involved. This is the exact case of running cross-validation procedure. However, all these cached kernel values can be shared across different tasks to remove the duplicated kernel computations if they are trained together. A parallel mechanism for GPU accelerated cross-validation is shown in the lower part of Figure 5.6.

In Chapter 7, the speed performance comparison between sequential and parallel cross-validation is given. The sequential one is referred to as GPUSVM-S, which uses GPUSVM to run cross-validation through the independent tasks. It trains and tests every fold of each different combination of hyperparameters one by one. The parallel counterpart is referred to as GPUSVM-P, which is a modified GPUSVM. It runs several tasks with different penalty value simultaneously on single GPU card. The algorithm of GPUSVM-P is derived from Algorithm 3 and it is shown in Algorithm 4. Every task shares the same input sequences and the kernel matrix cache but they keep their own support vectors and α values. All the tasks are synchronized in every iteration of SMO procedure. The violators are examined in the end of each iteration. It is very likely that some of these tasks share the same violators thus the duplicated kernel computation can be eliminated.
Figure 5.6: 5-fold cross-validation steps for Gaussian kernels.
Figure 5.7: Binary linear SVM training on the same dataset with four different C.

Figure 5.8: Same support vectors shared among the four tasks in Figure 5.7.
Algorithm 4 Parallel Cross Validation.

\[\alpha_i^k = 0, \epsilon_i^{k,p} = -y_i^k \] (device)
compute \(b_{k,p}^{up}, b_{k,p}^{lo}, i_{k,p}^{up}, i_{k,p}^{lo} \) (device)
compute \(b_k^{up}, b_k^{lo}, i_k^{up}, i_k^{lo} \) (host)

while \(b_k^{lo} > b_k^{up} + 2\tau \) do
\(\forall p, q \in [1, k] \) and \(p, q \in \mathbb{Z} \)
if \(i_{k,p}^{up} = i_{k,q}^{up} \parallel i_{k,p}^{lo} = i_{k,q}^{lo} \parallel i_{k,p}^{up} = i_{k,q}^{up} \parallel i_{k,p}^{lo} = i_{k_q}^{lo} \) then
 fetch kernel values from GPU memory
else
 compute \(K_{i_{k,p}^{lo}}^{i_{k,lo}^{k}}, K_{i_{k,p}^{up}}^{i_{k,up}^{k}}, K_{i_{k,p}^{up}}^{i_{k,lo}^{k}} \) (device)
end if
update \(\alpha_{i_{k,p}^{up}}, \alpha_{i_{k,lo}^{k}} \) (device)
compute \(b_{k,p}^{up}, b_{k,p}^{lo}, i_{k,p}^{up}, i_{k,p}^{lo} \) (device)
compute \(b_k^{up}, b_k^{lo}, i_k^{up}, i_k^{lo} \) (host)
end while

use \(\alpha_k \) to test the testing set
return number of misclassified testing samples in a vector for this task \(C = [C_1, \ldots, C_k] \)
Chapter 6

A Glance of GPUSVM

This chapter gives the overview of the GPUSVM tool and discusses the implementation of the software architecture.

6.1 GPUSVM Overview

GPUSVM has three layers. The top layer is a Graphic User Interface (GUI) written in Java. The GUI offers the user easy access to the tools and parameter setting. It has three main tabs which are for cross-validation, training and predicting purposes. They are shown in Figure 6.1, Figure 6.2 and Figure 6.3. The cross-validation interface allows the user to choose the training file and configure various parameters such as kernel type and scaling method. User can enter the specific GPU device id in a list to run the cross-validation procedure on multiple GPUs if available. Our Tesla system has two Tesla C2070s and six Tesla C2050s, thus the user can use all eight GPUs to accelerate the cross-validation at the same time. The results of the cross-validation will be returned as a table showing both number of support vectors and number of misclassifications for all different combinations of the training parameters. It draws a 2D surface for Gaussian/polynomial kernel and a curve for linear kernel. Because
there is only one hyperparameter needed for tuning linear SVM which is the penalty value C.

![Figure 6.1: GPUSVM: cross-validation interface.](image)

6.2 GPUSVM Implementation

The training interface lets the user choose the training file and enter the specific parameters for a particular kernel. The user is also able to specify a GPU device to run the training task. After the training procedure is done, a model file will be generated which contains all the necessary information for making predictions on the testing datasets. The training file could also be scaled before it is used. Three scaling methods are offered. Two of them scale the dataset to a value range of $[0, 1]$ or $[-1, 1]$. The third one scales the dataset with zero mean and standard deviation equal to one. The scaling information are stored in a separated file, which is used for scaling the query, i.e. testing, datasets so that the input feature space can be aligned. The
predicting interface requires the user to choose the query datasets and the model file as well as the scaling file. If the scaling is not performed during the training phase,
the scaling file will be an empty file. The user can specify the GPU device id for predicting phase. The result shows the number of misclassifications and the actual predicting accuracy.

The middle layer of GPUSVM package are several script files written in Python. Their major tasks are doing file manipulations. The shuffling tool rearranges the input data sequences randomly which is critical in cross-validation. In each fold of cross-validation, if the training part does not have equal distributions from all different classes, it could lead to some bad results. The scaling tool scales the input dataset according to a particular scaling method or an existing scaling file. The cross-validation tool slices the input data file to multiple folds and prepare the training dataset and verification dataset for the SVM solver and predictor. The SVM solver tool and predictor tool call the actual routine in the bottom layer for training and predicting purposes.

The bottom layer of GPUSVM package contains only two executable files written in C on top of CUDA. One is an SVM solver which solves the QP problem in SVM and generates the model file using GPU. The other one is a predictor which takes in the query file and a model file generated by the SVM solver to make predictions.
Chapter 7

GPUSVM Accuracy and Speed Performance on Real World Datasets

This chapter presents the experimental results achieved by using GPUSVM. The state of the art LIBSVM tool is used for comparison as the CPU counterpart. The system hardware configuration is given first and then the characteristics of the benchmarking datasets used in the tests are listed. The experimental tests focus on the comparison in terms of both the accuracy and speed performance. They are performed on different scale of datasets ranging from small number of examples to large number of examples. The shared kernel cross-validation performance is given in the end of the chapter.

7.1 Host and Device

The GPUSVM tool is developed using CUDA in C/C++. All the experimental tests are carried out by our latest Tesla server equipped with two Intel Xeon X5680 3.3GHz six-core CPUs, 96GB ECC DDR3 1333MHz main memory, six Tesla C2050 with 3GB
GDDR5 memory each and two Tesla C2070 with 6GB GDDR5 memory each. The storage device is a 128GB SSD with Fedora Core Linux 14 x64 installed. The CUDA driver and runtime version are both 3.2.

7.2 The Experimental Datasets

This section gives the information of datasets used in the experimental tests. All datasets used are downloaded either from official LIBSVM [10] website or LIBCVM [42] website. These datasets can be roughly divided into three different scales depending upon their sample sizes. Datasets which have less than 1000 samples are classified as small datasets. If the sample size of a dataset is ranging from 1000 to 100000, it is classified as a medium dataset. Datasets are classified as large datasets if their sample sizes are bigger than 100000. The characteristics of these datasets and the hyperparameters for the Gaussian RBF kernel are listed in Table 7.1. Several of them are binary class datasets and the rest are multiclass datasets. *Glass, iris, wine, sonar, breast-cancer, adult* datasets are from UCI [43] and *heart, letter, shuttle* datasets are from Statlog [44]. *Usps* is a hand written dataset [45] for text recognition. *Web* is web pages text categorization used in [7]. *Mnist* is another hand written text recognition dataset used in [46]. There are three large datasets listed at the bottom of Table 7.1. *Usps-ext* is the extension dataset of *usps*. *Covtype* is from UCI and *face-ext* is from MIT. The hyperparameter C is the penalty value and γ is the shape value of RBF kernel. The best C and γ are found out by using 5-fold cross-validation on $C \in \{2^i, i \in [-10, 10]\}$, $\gamma \in \{2^i, i \in [-5, 5]\}$ and they are listed in Table 7.1. The accuracy and speed performances shown in the following sections use these C and γ values. The default ϵ value used in these tests is 0.001.
Table 7.1: The experimental datasets and their hyperparameters for the Gaussian RBF kernel.

<table>
<thead>
<tr>
<th>Scale</th>
<th>Dataset</th>
<th># of training data</th>
<th># of testing data</th>
<th># of feature</th>
<th># of class</th>
<th>C</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>small</td>
<td>glass</td>
<td>214</td>
<td>N/A</td>
<td>9</td>
<td>6</td>
<td>512</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>iris</td>
<td>150</td>
<td>N/A</td>
<td>4</td>
<td>3</td>
<td>16</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>wine</td>
<td>178</td>
<td>N/A</td>
<td>13</td>
<td>3</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>heart</td>
<td>270</td>
<td>N/A</td>
<td>13</td>
<td>2</td>
<td>0.5</td>
<td>0.0625</td>
</tr>
<tr>
<td></td>
<td>sonar</td>
<td>208</td>
<td>N/A</td>
<td>60</td>
<td>2</td>
<td>4</td>
<td>0.125</td>
</tr>
<tr>
<td></td>
<td>breast-cancer</td>
<td>683</td>
<td>N/A</td>
<td>10</td>
<td>2</td>
<td>0.25</td>
<td>0.125</td>
</tr>
<tr>
<td>medium</td>
<td>adult</td>
<td>32561</td>
<td>16281</td>
<td>123</td>
<td>2</td>
<td>1</td>
<td>0.0625</td>
</tr>
<tr>
<td></td>
<td>usps</td>
<td>7291</td>
<td>2007</td>
<td>256</td>
<td>10</td>
<td>128</td>
<td>0.015625</td>
</tr>
<tr>
<td></td>
<td>letter</td>
<td>15000</td>
<td>5000</td>
<td>16</td>
<td>26</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>shuttle</td>
<td>43500</td>
<td>14500</td>
<td>9</td>
<td>7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>web</td>
<td>49749</td>
<td>14951</td>
<td>300</td>
<td>2</td>
<td>64</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>mnist</td>
<td>60000</td>
<td>10000</td>
<td>780</td>
<td>10</td>
<td>16</td>
<td>0.003906</td>
</tr>
<tr>
<td>large</td>
<td>usps-ext</td>
<td>266079</td>
<td>75383</td>
<td>675</td>
<td>2</td>
<td>1</td>
<td>0.03125</td>
</tr>
<tr>
<td></td>
<td>covtype</td>
<td>500000</td>
<td>81012</td>
<td>54</td>
<td>7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>face-ext</td>
<td>489410</td>
<td>24045</td>
<td>361</td>
<td>2</td>
<td>0.001</td>
<td>1</td>
</tr>
</tbody>
</table>

7.3 The Accuracy Comparison Test on Small and Medium Datasets

Table 7.2 shows the accuracy performance between GPUSVM and LIBSVM on small and medium datasets. In this test, both methods have very close accuracy performance compared to each other. GPUSVM offers as good accuracy as LIBSVM does. Their final accuracies are slightly different from each other. This is because their model do not posses exact number of support vectors. Besides, LIBSVM uses double precision floating points and GPUSVM uses single precision floating points. This will cause some minor differences in their final α values. GPUSVM does not support double precision because the speed performance of floating points operations using
Table 7.2: The accuracy performance comparison between GPUSVM and LIBSVM on small and medium datasets.

<table>
<thead>
<tr>
<th>dataset</th>
<th>SVM</th>
<th>Training Accuracy</th>
<th>Predicting Accuracy</th>
<th># of support vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>glass</td>
<td>LIBSVM</td>
<td>98.5981%</td>
<td>N/A</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>98.1308%</td>
<td>N/A</td>
<td>144</td>
</tr>
<tr>
<td>iris</td>
<td>LIBSVM</td>
<td>98%</td>
<td>N/A</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>98%</td>
<td>N/A</td>
<td>27</td>
</tr>
<tr>
<td>wine</td>
<td>LIBSVM</td>
<td>99.4382%</td>
<td>N/A</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>99.4382%</td>
<td>N/A</td>
<td>75</td>
</tr>
<tr>
<td>heart</td>
<td>LIBSVM</td>
<td>85.1852%</td>
<td>N/A</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>85.1852%</td>
<td>N/A</td>
<td>146</td>
</tr>
<tr>
<td>sonar</td>
<td>LIBSVM</td>
<td>100%</td>
<td>N/A</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>100%</td>
<td>N/A</td>
<td>150</td>
</tr>
<tr>
<td>breast-cancer</td>
<td>LIBSVM</td>
<td>97.2182%</td>
<td>N/A</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>97.2182%</td>
<td>N/A</td>
<td>91</td>
</tr>
<tr>
<td>adult</td>
<td>LIBSVM</td>
<td>85.7928%</td>
<td>85.0132%</td>
<td>11647</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>85.7928%</td>
<td>85.0193%</td>
<td>11587</td>
</tr>
<tr>
<td>usps</td>
<td>LIBSVM</td>
<td>99.9863%</td>
<td>95.6153%</td>
<td>1785</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>99.9863%</td>
<td>95.715%</td>
<td>1923</td>
</tr>
<tr>
<td>letter</td>
<td>LIBSVM</td>
<td>100%</td>
<td>96.82%</td>
<td>10726</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>99.8467%</td>
<td>97.38%</td>
<td>11936</td>
</tr>
<tr>
<td>shuttle</td>
<td>LIBSVM</td>
<td>99.5149%</td>
<td>99.6069%</td>
<td>3109</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>99.4736%</td>
<td>99.5655%</td>
<td>3667</td>
</tr>
<tr>
<td>web</td>
<td>LIBSVM</td>
<td>99.4553%</td>
<td>99.4515%</td>
<td>35231</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>99.4553%</td>
<td>99.4515%</td>
<td>35220</td>
</tr>
<tr>
<td>mnist</td>
<td>LIBSVM</td>
<td>99.5917%</td>
<td>98.03%</td>
<td>9738</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>99.4617%</td>
<td>98.27%</td>
<td>12919</td>
</tr>
</tbody>
</table>

double precision on GPU is significantly lower than using single precision. Using double precision also requires twice of memory storage space for the same amount of data compared to using single precision. And this will bring memory limits to the GPUSVM on solving large datasets problems. The accuracy performance of LIBSVM has shown that it does not benefit from using double precision. Thus the GPUSVM is designed using single precision which achieves similar accuracy performance and
emphasizes more on speed and solving large scale problems. For binary class datasets, GPUSVM has almost identical number of support vectors as LIBSVM does. LIBSVM implements OVO and GPUSVM uses OVA approach for multiclass datasets thus their number of support vectors differ from each other. LIBSVM uses a working set method which solves a QP problem with the size larger than two. GPUSVM also uses an analytic method to iteratively solve the QP problem with the working set size fixed at two.

7.4 The Speed Performance Comparison Test on Small and Medium Datasets

The following tests shown in Table 7.3 and Table 7.4 are the speed performance between LIBSVM and GPUSVM in both training and predicting phases for small and medium datasets. Small datasets do not have testing set therefore only the training set is used for prediction. The performance of LIBSVM using one core of Xeon processor is set as the base line. It is compared with LIBSVM using all 12 cores from two Xeon CPUs with LIBSVM’s built in OpenMP feature enabled. The total number of threads is set at 12 to extract the maximum performance of multi-core CPU. GPUSVM using one Tesla C2050/C2070 is also listed as the comparison reference to show the speedup. All GPU devices used for tests have the Error Correction Code (ECC) function disabled. This will free more device memory to the application programs. It is easy to see that whether using GPU or multi-core CPU does not bring any performance gain for solving small SVM classification problem due to the overhead of using OpenMP and CUDA. Besides, the training time and predicting time on small datasets are trivial. On the other hand, GPUSVM shows much better performance on medium datasets and it achieves a speedup of 2.27x - 77x compared
to standard LIBSVM. Tesla C2070 is generally faster than Tesla C2050 because of
the doubled device memory.

Table 7.3: The speed performance comparison between GPUSVM and LIBSVM on small datasets.

<table>
<thead>
<tr>
<th>dataset</th>
<th>SVM</th>
<th>Processor</th>
<th>Training Time</th>
<th>Speedup</th>
<th>Predicting Time</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Xeon 1-core</td>
<td>0.008s</td>
<td>1x</td>
<td>0.004s</td>
<td>1x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xeon 12-core</td>
<td>0.010s</td>
<td>0.8x</td>
<td>0.005s</td>
<td>0.8x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tesla C2050</td>
<td>3.759s</td>
<td>0.0021x</td>
<td>0.009s</td>
<td>0.4444x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tesla C2070</td>
<td>2.32s</td>
<td>0.0035x</td>
<td>0.008s</td>
<td>0.5x</td>
<td></td>
</tr>
<tr>
<td>glass</td>
<td>GPUSVM</td>
<td>Xeon 1-core</td>
<td>0.002s</td>
<td>1x</td>
<td>0.002s</td>
<td>1x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xeon 12-core</td>
<td>0.003s</td>
<td>0.6667x</td>
<td>0.004s</td>
<td>0.5x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla C2050</td>
<td>1.305s</td>
<td>0.0015x</td>
<td>0.006s</td>
<td>0.3333x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla C2070</td>
<td>1.284s</td>
<td>0.0016x</td>
<td>0.006s</td>
<td>0.3333x</td>
</tr>
<tr>
<td>iris</td>
<td>LIBSVM</td>
<td>Xeon 1-core</td>
<td>0.003s</td>
<td>1x</td>
<td>0.003s</td>
<td>1x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xeon 12-core</td>
<td>0.004s</td>
<td>0.75x</td>
<td>0.005s</td>
<td>0.6x</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>Tesla C2050</td>
<td>1.567s</td>
<td>0.0019x</td>
<td>0.008s</td>
<td>0.375x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla C2070</td>
<td>1.055s</td>
<td>0.0028x</td>
<td>0.007s</td>
<td>0.4286x</td>
</tr>
<tr>
<td>wine</td>
<td>LIBSVM</td>
<td>Xeon 1-core</td>
<td>0.006s</td>
<td>1x</td>
<td>0.005s</td>
<td>1x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xeon 12-core</td>
<td>0.005s</td>
<td>1.2x</td>
<td>0.006s</td>
<td>0.8333x</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>Tesla C2050</td>
<td>1.03s</td>
<td>0.0058x</td>
<td>0.01s</td>
<td>0.5x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla C2070</td>
<td>1.048s</td>
<td>0.0057x</td>
<td>0.01s</td>
<td>0.5x</td>
</tr>
<tr>
<td>heart</td>
<td>LIBSVM</td>
<td>Xeon 1-core</td>
<td>0.014s</td>
<td>1x</td>
<td>0.011s</td>
<td>1x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xeon 12-core</td>
<td>0.011s</td>
<td>1.2727x</td>
<td>0.011s</td>
<td>1x</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>Tesla C2050</td>
<td>1.383s</td>
<td>0.0101x</td>
<td>0.009s</td>
<td>1.2222x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla C2070</td>
<td>1.645s</td>
<td>0.0085x</td>
<td>0.009s</td>
<td>1.2222x</td>
</tr>
<tr>
<td>sonar</td>
<td>LIBSVM</td>
<td>Xeon 1-core</td>
<td>0.008s</td>
<td>1x</td>
<td>0.006s</td>
<td>1x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xeon 12-core</td>
<td>0.006s</td>
<td>1.3333x</td>
<td>0.012s</td>
<td>0.5x</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>Tesla C2050</td>
<td>1.352s</td>
<td>0.0059x</td>
<td>0.025s</td>
<td>0.24x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla C2070</td>
<td>1.395s</td>
<td>0.0057x</td>
<td>0.022s</td>
<td>0.2727x</td>
</tr>
<tr>
<td>breast</td>
<td>LIBSVM</td>
<td>Xeon 1-core</td>
<td>0.008s</td>
<td>1x</td>
<td>0.006s</td>
<td>1x</td>
</tr>
<tr>
<td>cancer</td>
<td></td>
<td>Xeon 12-core</td>
<td>0.006s</td>
<td>1.3333x</td>
<td>0.012s</td>
<td>0.5x</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>Tesla C2050</td>
<td>1.352s</td>
<td>0.0059x</td>
<td>0.025s</td>
<td>0.24x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla C2070</td>
<td>1.395s</td>
<td>0.0057x</td>
<td>0.022s</td>
<td>0.2727x</td>
</tr>
</tbody>
</table>

The speed performance of OpenMP enabled LIBSVM is quite good on medium size datasets. This is due to the shared memory system setting. All threads resided in the CPU can access the large main memory. And most of the kernel values can be cached in the main memory. However, this performance is strictly limited by the
Table 7.4: The speed performance comparison between GPUSVM and LIBSVM on medium datasets.

<table>
<thead>
<tr>
<th>dataset</th>
<th>SVM</th>
<th>Processor</th>
<th>Training Time</th>
<th>Speedup</th>
<th>Testing Time</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time</td>
<td></td>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>adult</td>
<td>LIBSVM</td>
<td>Xeon 1-core</td>
<td>60.634s</td>
<td>1x</td>
<td>20.273s</td>
<td>1x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xeon 12-core</td>
<td>8.998s</td>
<td>6.7386x</td>
<td>2.216s</td>
<td>9.1485x</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>Tesla C2050</td>
<td>8.644s</td>
<td>7.0145x</td>
<td>0.697s</td>
<td>29.0861x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla C2070</td>
<td>7.636s</td>
<td>7.9405x</td>
<td>0.649s</td>
<td>31.2373x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xeon 1-core</td>
<td>4.901s</td>
<td>1x</td>
<td>2.113s</td>
<td>1x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xeon 12-core</td>
<td>1.331s</td>
<td>3.6822x</td>
<td>0.446s</td>
<td>4.7377x</td>
</tr>
<tr>
<td></td>
<td>LIBSVM</td>
<td>Tesla C2050</td>
<td>3.005s</td>
<td>1.6309x</td>
<td>0.088s</td>
<td>24.0114x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla C2070</td>
<td>2.158s</td>
<td>2.2711x</td>
<td>0.081s</td>
<td>26.0864x</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>Tesla C2050</td>
<td>3.005s</td>
<td>1.6309x</td>
<td>0.088s</td>
<td>24.0114x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla C2070</td>
<td>2.158s</td>
<td>2.2711x</td>
<td>0.081s</td>
<td>26.0864x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xeon 1-core</td>
<td>37.768s</td>
<td>1x</td>
<td>4.666s</td>
<td>1x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xeon 12-core</td>
<td>11.902s</td>
<td>3.1712x</td>
<td>1.88s</td>
<td>2.4819x</td>
</tr>
<tr>
<td></td>
<td>LIBSVM</td>
<td>Tesla C2050</td>
<td>11.318s</td>
<td>3.3370x</td>
<td>0.465s</td>
<td>10.0344x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla C2070</td>
<td>10.554s</td>
<td>3.5785x</td>
<td>0.445s</td>
<td>10.4854x</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>Tesla C2050</td>
<td>3.267s</td>
<td>2.8708x</td>
<td>0.573s</td>
<td>4.192x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla C2070</td>
<td>2.238s</td>
<td>4.1908x</td>
<td>0.526s</td>
<td>4.5665x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xeon 1-core</td>
<td>9.379s</td>
<td>1x</td>
<td>2.402s</td>
<td>1x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xeon 12-core</td>
<td>2.047s</td>
<td>4.5818x</td>
<td>0.642s</td>
<td>3.7414x</td>
</tr>
<tr>
<td></td>
<td>LIBSVM</td>
<td>Tesla C2050</td>
<td>3.267s</td>
<td>2.8708x</td>
<td>0.573s</td>
<td>4.192x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla C2070</td>
<td>2.238s</td>
<td>4.1908x</td>
<td>0.526s</td>
<td>4.5665x</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>Tesla C2050</td>
<td>3.267s</td>
<td>2.8708x</td>
<td>0.573s</td>
<td>4.192x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla C2070</td>
<td>2.238s</td>
<td>4.1908x</td>
<td>0.526s</td>
<td>4.5665x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xeon 1-core</td>
<td>1450.933s</td>
<td>1x</td>
<td>59.278s</td>
<td>1x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xeon 12-core</td>
<td>199.784s</td>
<td>7.2625x</td>
<td>6.819s</td>
<td>8.6931x</td>
</tr>
<tr>
<td></td>
<td>LIBSVM</td>
<td>Tesla C2050</td>
<td>94.317s</td>
<td>15.3836x</td>
<td>1.267s</td>
<td>46.7861x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla C2070</td>
<td>71.291s</td>
<td>20.3523x</td>
<td>1.217s</td>
<td>48.7083x</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>Tesla C2050</td>
<td>58.308s</td>
<td>4.4004x</td>
<td>1.154s</td>
<td>75.0078x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tesla C2070</td>
<td>39.552s</td>
<td>6.4871x</td>
<td>1.124s</td>
<td>77.0098x</td>
</tr>
</tbody>
</table>

number of CPUs and the cores of each CPU on the motherboard. That means the maximum performance of CPU in this workstation is achieved. Using any number of threads other than 12 will not gain any benefit. On the other hand, the potential of using GPU is huge since there is only one GPU device involved in the current testing. Properly developed multi-GPU model is expected to bring dramatic speed improvement.
7.5 Experimental Results for Different Epsilon on Medium Datasets

In this part of tests, various ϵ values are used to find out the impacts on both accuracy and speed performance of changing the value of ϵ. The ϵ value is used as the converging criteria during the iterative learning process in the SMO procedure. In theory, the smaller the ϵ value is, the longer time the convergence will be likely to take for each iteration. The recommended ϵ value is 0.001 which has been mentioned in Section 5. In the following tests, the ϵ values used are 0.0001, 0.001, 0.01 and 0.1. The accuracy is measured for predicting datasets. The time cost is measured for training phase. The medium datasets are used due to their varieties.

Figure 7.1 shows that all datasets have close accuracy performance on different ϵ values except the usps dataset. The accuracy of usps dataset has a drop on both very small and very large ϵ values. The largest ϵ value used on usps dataset produces an accuracy which is significantly lower than any other ϵ values do.

Figure 7.2 presents the total number of support vectors found during the training phase for different ϵ values. The web dataset is the only one which has much smaller number of support vectors when it is trained by using the largest ϵ value. All other datasets get close number of support vectors by using different ϵ values. Considering the accuracy performance shown in Figure 7.1, web dataset actually requires less number of support vectors to achieve its best accuracy.

Figure 7.3 shows the time cost in seconds for the training phase by using different ϵ values. All datasets shows a decline of time cost when the ϵ increases except usps. Usps has slight increase of time cost when ϵ increases. It is expected that a larger epsilon value should make the converging procedure faster.

It is obvious that different ϵ values do bring some impacts for both accuracy
Figure 7.1: The accuracy performance for different ϵ values on medium datasets.

and speed performances. These impacts vary case by case on individual datasets. However, it is also clear to see that the default ϵ value can always produce good enough results.

7.6 Experimental Results on Large Datasets

In this test, both the accuracy performance and speed performance comparison between GPUSVM and LIBSVM are measured on large datasets. Table 7.5 shows the accuracy comparison and the number of support vectors acquired during the training phase. The hyperparameters used in the tests are listed in Table 7.1. These accura-
Figure 7.2: The number of support vectors for different ϵ values on medium datasets.

cies are for testing data given in Table 7.1. For the binary class usps-ext and face-ext datasets, GPUSVM and LIBSVM achieve exactly the same accuracy. LIBSVM performs slightly better on the multiclass covtype dataset, which might be due to the performance difference between OVO and OVA.

Table 7.6 shows the training time cost, the predicting time cost and the relative speedups compared to the LIBSVM using 1 core. The training time cost is also shown as a graphic representation in Figure 7.4. GPUSVM outperforms standard LIBSVM approximately two orders of magnitude and OpenMP enabled LIBSVM about one order of magnitude. This is very impressive speed improvement and it shows that GPUSVM is more suitable for large scale datasets. Figure 7.5 is the time
Figure 7.3: The speed performance for different ϵ values on medium datasets.

Table 7.5: The accuracy performance comparison between CPU and GPU on large datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>SVM</th>
<th>Testing Accuracy</th>
<th># of support vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>usps-ext</td>
<td>LIBSVM</td>
<td>99.2332%</td>
<td>39570</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>99.2332%</td>
<td>38598</td>
</tr>
<tr>
<td>covtype</td>
<td>LIBSVM</td>
<td>80.5028%</td>
<td>246444</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>80.3362%</td>
<td>267373</td>
</tr>
<tr>
<td>face-ext</td>
<td>LIBSVM</td>
<td>98.037%</td>
<td>52488</td>
</tr>
<tr>
<td></td>
<td>GPUSVM</td>
<td>98.037%</td>
<td>34992</td>
</tr>
</tbody>
</table>
cost comparison of predicting phase. GPUSVM is blazing fast which is about 16 times faster than OpenMP enabled LIBSVM and 380 times faster than standard LIBSVM.

Table 7.6: The speed performance comparison between CPU and GPU on large datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>SVM</th>
<th>Training Time</th>
<th>Speedup</th>
<th>Testing Time</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LIBSVM (Xeon 1-core)</td>
<td>1511.9m</td>
<td>1x</td>
<td>190.7m</td>
<td>1x</td>
</tr>
<tr>
<td></td>
<td>LIBSVM (Xeon 12-core)</td>
<td>66.4m</td>
<td>22.8x</td>
<td>8.4m</td>
<td>22.7x</td>
</tr>
<tr>
<td></td>
<td>GPUSVM (Tesla C2070)</td>
<td>8.4m</td>
<td>180x</td>
<td>0.5m</td>
<td>381.4x</td>
</tr>
<tr>
<td></td>
<td>LIBSVM (Xeon 1-core)</td>
<td>1347.7m</td>
<td>1x</td>
<td>198m</td>
<td>1x</td>
</tr>
<tr>
<td></td>
<td>LIBSVM (Xeon 12-core)</td>
<td>59m</td>
<td>22.84x</td>
<td>8.7</td>
<td>22.76x</td>
</tr>
<tr>
<td></td>
<td>GPUSVM (Tesla C2070)</td>
<td>19.4m</td>
<td>69.5x</td>
<td>0.7m</td>
<td>282.9x</td>
</tr>
<tr>
<td></td>
<td>LIBSVM (Xeon 1-core)</td>
<td>6522.8m</td>
<td>1x</td>
<td>195m</td>
<td>1x</td>
</tr>
<tr>
<td></td>
<td>LIBSVM (Xeon 12-core)</td>
<td>286.5m</td>
<td>22.77x</td>
<td>8.5m</td>
<td>22.9x</td>
</tr>
<tr>
<td></td>
<td>GPUSVM (Tesla C2070)</td>
<td>5.3m</td>
<td>1230.7x</td>
<td>0.3m</td>
<td>650x</td>
</tr>
</tbody>
</table>

Figure 7.4: Training time comparison between GPUSVM and LIBSVM on large datasets.
7.7 The Cross Validation Performance Comparison Using Single GPU

One of major contributions of this dissertation is using shared kernel matrix across multiple training tasks during the cross-validation procedure. Each training task with its own hyperparameter shares the kernel matrix cached in the GPU memory. Thus many duplicated kernel computations can be eliminated so that the training time cost can be shortened. Adult and web datasets are used for measuring the shared kernel cross-validation speed performance. Table 7.7 shows the comparison of the training time cost between GPUSVM-S, GPUSVM-P and LIBSVM. GPUSVM-S is the single task training as mentioned before and it trains a pair of C and γ one by one on GPU. It basically calls GPUSVM tool directly. GPUSVM-P is a modified GPUSVM tool which uses the shared kernel matrix to train all C and one γ to-
gether. LIBSVM trains a pair of C and γ one by one which is the same as what GPUSVM-S does. For adult dataset, the training parameters are $\gamma = 0.0625$ and $C \in \{0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64\}$. For web dataset, the training parameters are $\gamma = 8$ and $C \in \{0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64\}$. The performance of LIBSVM is set as the benchmark baseline. GPUSVM-P is 10 times faster on adult dataset and almost 100 times faster on web dataset for SVM training.

Table 7.7: The speed performance comparison among GPUSVM-S, GPUSVM-P and LIBSVM.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>SVM</th>
<th>Training time</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>adult</td>
<td>LIBSVM</td>
<td>1601.37s</td>
<td>1x</td>
</tr>
<tr>
<td></td>
<td>GPUSVM-S</td>
<td>309.91s</td>
<td>5.2x</td>
</tr>
<tr>
<td></td>
<td>GPUSVM-P</td>
<td>155.42s</td>
<td>10.3x</td>
</tr>
<tr>
<td>web</td>
<td>LIBSVM</td>
<td>12198.3s</td>
<td>1x</td>
</tr>
<tr>
<td></td>
<td>GPUSVM-S</td>
<td>564.16s</td>
<td>21.6x</td>
</tr>
<tr>
<td></td>
<td>GPUSVM-P</td>
<td>123.36s</td>
<td>98.9x</td>
</tr>
</tbody>
</table>

In order to analyze the performance result in more detail, Figure 7.6 shows the independent task comparison between LIBSVM and GPUSVM-S. Both of them are measured with 10 pairs of different combinations of C and γ values in 10 tasks. GPUSVM-S shows good speed improvement on every independent task. The total number of support vectors of GPUSVM-S and LIBSVM is very close in each task, which guarantees the accuracy performance. The support vectors and their related α obtained by GPUSVM-P are identical to GPUSVM-S. The total number of kernel computations are shown in Figure 7.7. The duplicated kernel computations in GPUSVM-S lead to a longer training time compared to GPUSVM-P.
Figure 7.6: Independent task comparison on speed performance and number of support vectors between GPUSVM and LIBSVM.

Figure 7.7: Total number of kernel computations for GPUSVM-S and GPUSVM-P.
Chapter 8

Conclusions and Future Work

This dissertation covers the fields of machine learning, i.e. data mining. In particular, it contributes to the speeding up the approaches, algorithms and software for learning from large datasets. It is focused primarily on the classification (pattern recognition) algorithms but the ideas and software developed can readily be extended to solving regression (high-dimensional functions approximation) tasks too. All the algorithms are implemented on GPGPUs but they can be extended to other parallel computing environment.

The first, massive calculation, problem to be solved was a calculation of distance matrix for large datasets. A general CUDA based distance calculation method is proposed which works for three different distance kernels including weighted Euclidean distance, cosine similarity and weighted Manhattan distance. It achieves roughly 5 times speedup on Euclidean distance calculation compared to the fastest CPU’s algorithms. Several parallel sorting algorithms are also compared and they have their own advantages and disadvantages according to different scenarios. By combining the parallel distance matrix computation and parallel sorting algorithms together, an efficient CUDA based parallel k-NNs search tool, GPUKNN, is developed to accelerate the time consuming k-NNs search procedure. The results obtained have shown that
GPUKNN is faster than VG-KNN, which has been considered as being many times faster than other CPU based k-NNs search algorithms.

A parallel processing algorithm for SVM training on GPGPUs, which uses a parallel SMO is also proposed and implemented in this dissertation. The related software package GPUSVM is developed on top of CUDA platform. Although GPUSVM does not have a rich feature set like LIBSVM does, it offers enough capability to process real-world datasets. It supports multiclass classification, three popular kernel functions for SVM training, cross-validation and double (nested) cross-validation. GPUSVM achieves very close accuracy performance as LIBSVM does since they both use working set technique for solving QP problem. For small datasets, GPUSVM does not benefit from its parallel architecture since the training time is trivial. However, when it comes to the medium and large datasets, GPUSVM shows the superior performance in terms of speed. The time cost by using GPUSVM is from one order of magnitude to three orders of magnitude (10 to 1000) times smaller compared to LIBSVM’s one. The novel cross-validation tool implemented in GPUSVM using shared kernel matrix has much better speed performance than standard cross-validation procedure due to the heavily reduced amount of kernel computations. This method may be less capable of solving large datasets compared to the standard one because of the memory limitations. The cross-validation can always be accelerated by using multiple GPU devices.

GPUs have brought an opportunity of accelerating many applications to solve various problems. Although GPUs can generally improve the speed performance compared to classic sequential algorithms, there are many different factors which all have more or less impacts on how much improvement one can achieve with the help of GPUs. For example, the Amdahl’s law decides the maximal possible acceleration brought by parallel processing for a certain problem. Thus, it is important to dive
deeper into understanding both how CUDA model works and what special features are offered by CUDA. It is even more important to discover the parallelism in a certain problem and how to use the features offered by CUDA to solve it. The major future work of this dissertation can be extending the current algorithm to solving problems with ultra-large datasets. The recent release of CUDA 4.0 introduces new features like Unified Virtual Addressing. This feature can connect all the devices memory from different GPU cards together, and in this way every GPU card can bypass the CPU and main memory to access the global memory from other cards. Thus, an ultra-large dataset will be able to fit into the memory of multiple GPU cards and the memory limitation of one single card will be resolved. There are a few more possible extensions of this dissertation in future such as tuning cross-validation and adding support of solving regression problems. Tuning cross-validation is an important procedure because people always use cross-validation to find the best hyperparameter for the training dataset and these hyperparameters are used for generating the SVM model. Standard cross-validation performs a grid search on a series of hyperparameters. This could lead to a very long training time due to the improper combinations of hyperparameters used. One possible method which can accelerate the search of the best hyperparameters is automatic tuning. Adding regression support is another good extension because SVM is not only very popular for its classification performance, but it also has good performance in solving regression problems. It is expected that GPUs can bring significant speed improvement in solving regression problems.
List of References

Qi Li was born on Aug 23rd, 1985 in China. He received his Bachelor of Science in Electrical Engineering from Beijing University of Posts and Telecommunications in 2007 and Master of Science in Computer Science from Virginia Commonwealth University in 2008. His research interests include machine learning, high performance computing and parallel computing using Graphic Processing Units. Previously, he also worked on embedded system design area including micro-controller programming and circuit layout.