2014

Hospital: A Creature of Duality

Gordon McCormick

Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

Part of the Art and Design Commons

© The Author

Downloaded from
https://scholarscompass.vcu.edu/etd/3392

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
A CREATURE OF DUALITY

SEEKING BALANCE BETWEEN

NATURE AND TECHNOLOGY

IN HEALTH ARCHITECTURE

GORDON MCCORMICK
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODE OVERLAY</td>
<td>2</td>
</tr>
<tr>
<td>MANIFESTO</td>
<td>3</td>
</tr>
<tr>
<td>INTRODUCTION TO PROJECT</td>
<td>4</td>
</tr>
<tr>
<td>INTRODUCTION TO SITE</td>
<td>8</td>
</tr>
<tr>
<td>SITE ANALYSIS</td>
<td>10</td>
</tr>
<tr>
<td>CASE STUDIES</td>
<td>20</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>36</td>
</tr>
<tr>
<td>SPACE PLANNING</td>
<td>42</td>
</tr>
<tr>
<td>CONCEPT</td>
<td>48</td>
</tr>
<tr>
<td>DESIGN SOLUTION</td>
<td>64</td>
</tr>
<tr>
<td>THESIS BOARDS</td>
<td>68</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>70</td>
</tr>
</tbody>
</table>

CODE OVERLAY

1. **CONSTRUCTION TYPE:** Type 3A
2. **USE:** Group I-3
3. **OCCUPANCY:** 240 max. capacity of building
4. **HEIGHT LIMITATION:** 1 Story
5. **AREA LIMITATION:** 11,000 SF
6. **FIRE SUPRESSION SYSTEM:** Quick Response and Resident Sprinklers
7. **STRUCTURAL FIRE RATING:** 1 Hour
8. **MEANS OF EGRESS:** 4
9. **NUMBER OF STAIRS:** 2
10. **NUMBER OF EXIT SIGNS:** 4 per floor
11. **ACCESSIBILITY:** 100% accessibility in all dwelling and sleeping areas
12. **OCCUPANCY LOAD:** 240 SF/person
13. **NUMBER OF BATHROOMS:** 8 full private bathrooms
14. **NUMBER OF RAMPS:** 2

Construction Drawings courtesy of Freeman Solt LLC

ELEVATORS

STAIRS (EGRESS)

RAMPS (EGRESS)

EXIT SIGNS
There was once a small fishing village situated in a lagoon on the edge of the sea. One day at low tide, some of the fishermen noticed rocks along the shore glistening in the sun. A white, powdery residue had been left by the evaporated sea water. It was salt. Unbeknown to the fishermen, the concentration of sea water the shallow lagoon had generated a high salinity content. That, coupled with the sunshine from the warm climate of the region, created the perfect conditions for harvesting the mineral.

Salt had been around for centuries, used for everything from cleaning wounds to purifying water. However, it was expensive, imported from the East on the Silk Road—until now.

The newly discovered sea salt was also of a much higher quality than its eastern cousin, which was mined from the bowels of mountains. The purity of the sea salt made it even more valuable, and the fishing village soon became a prosperous and wealthy trade center. The salt trade attracted merchants from civilizations throughout the known world.

The fortunes of the village only increased with the fall of the Great Empire, which had once spanned across three continents and protected its borders from the uncivilized savages that roamed beyond. With the Empire gone, there was no army to protect the village from the nomadic raiders.

These raids came often, looting and laying waste to the coastal inhabitants. These chaotic episodes would sometimes last days at a time. The villagers’ only hope of escape was the sea, boarding their merchant ships and old fishing vessels with whatever supplies they could carry. There they would face starvation, exposure, and the wrath of storm surges.

At some point, a villager decided to make preparations for an anticipated future raid. He took his lands out into the lagoon and built a dock far off the coastline so his family could escape the raiders. The original design was simple: a wooden structure with a dock to land the does and a bridge to board the boats. The villagers would then carry or sail to the dock.

That town is known today as Venice, Italy. Without hardship, good design cannot flourish.
INTRODUCTION TO PROJECT

PROJECT STATEMENT

This thesis stems from an investigation of the role that design plays in fostering healing. From the outset, I was interested in exploring the ways in which architectural design can enhance the health care experience. A central question in this study was: Can architecture alter the environment in ways that impact health care outcomes?

PROJECT GOALS

1. Develop a design solution that can adapt to the evolving health care clinic, without the need for significant renovation.
2. Change the role of the hospital from an institution that demands change, to one that can evolve with it.
3. Change the perception of hospitals as cold, sterile, and uncomfortable environments to places that are warm, hospitable, and soothing.
4. Incorporate design elements that will challenge health care administrators to explore and embrace new methods of treatment.
5. Explore opportunities to develop a unique architectural language.

PROJECT ABSTRACT

History has shown that the development of health care architecture has been hindered by the influence of outside forces. These influences have affected health care design. Through my research and analysis, I have come to realize that nature’s innovations in technology that allow us to heal on an individual level resemble an organism rather than a machine.

DUALITIES

A hospital is a complex creature, for healing is a complex process that can be influenced by many factors. A hospital’s landscape has evolved over time. As design professionals, we seek to understand how these changes can benefit the overall health care experience. This project abstraction is a place where the architectural elements of nature and technology are in balance, to create a healing environment.

THESIS STATEMENT

We begin then by defining these dualities with one simple question: What is a hospital? A medical institution, whose greater objective is to save lives. A hospital is a complex creature, for healing is a complex process that can be influenced by many factors. A hospital’s landscape has evolved over time. As design professionals, we seek to understand how these changes can benefit the overall health care experience. This project abstraction is a place where the architectural elements of nature and technology are in balance, to create a healing environment.

THESIS SUMMARY

The development of health care architecture has been hindered by the influence of outside forces. These influences have affected health care design. Through my research and analysis, I have come to realize that nature’s innovations in technology that allow us to heal on an individual level resemble an organism rather than a machine. A hospital is a complex creature, for healing is a complex process that can be influenced by many factors. A hospital’s landscape has evolved over time. As design professionals, we seek to understand how these changes can benefit the overall health care experience. This project abstraction is a place where the architectural elements of nature and technology are in balance, to create a healing environment.

We begin then by defining these dualities with one simple question: What is a hospital? A medical institution, whose greater objective is to save lives. A hospital is a complex creature, for healing is a complex process that can be influenced by many factors. A hospital’s landscape has evolved over time. As design professionals, we seek to understand how these changes can benefit the overall health care experience. This project abstraction is a place where the architectural elements of nature and technology are in balance, to create a healing environment.

CONCLUSIONS

This project abstraction is a place where the architectural elements of nature and technology are in balance, to create a healing environment. It is a place where the architectural elements of nature and technology are in balance, to create a healing environment. It is a place where the architectural elements of nature and technology are in balance, to create a healing environment. It is a place where the architectural elements of nature and technology are in balance, to create a healing environment. It is a place where the architectural elements of nature and technology are in balance, to create a healing environment.

ACKNOWLEDGMENTS

This project would not have been possible without the support and guidance of my advisor, Dr. Jane Smith. I would also like to thank my colleagues for their encouragement and support.

REFERENCES

INTRODUCTION TO SITE

The building was originally the Robert E. Lee Elementary School, designed and built by local Richmond architect Charles Robinson in 1914. In 2003, the building was renovated into an apartment building, though great care was taken to maintain the historical integrity of the building.

EXTERIOR BUILDING ANALYSIS

The building has a strong architectural personality, that expresses balance, symmetry and classical ideals such as Palladian windows, a colonnade, a frieze, domes, and expressive stone work.

Construction Drawings courtesy of Freeman Solt LLC.
AREA OF SCOPE

SECTION SHOWING CENTRAL SPACE

4TH FLOOR PLAN

SECTION SHOWING RAMP AND TOWER LOFT

4TH FLOOR PLAN

PROPORTION STUDY

4TH FLOOR PLAN

DAYLIGHT STUDY

Construction Drawings courtesy of Freeman Solt LLC
The way that the tower loft space opens up to the copper dome is such a grand feature. The spiral staircase leading up to an upper-level area in the space directly beneath the dome is an interesting element to the overall architectural expression.

The character of the specific spaces of the existing building suggest a particular layout. The 2-story auditorium would be ideal for an open space from the program. The existing corridor will likely remain, and the alignment of the existing classroom space (currently apartments) would be a good fit for the hospital patient rooms.

Construction Drawings courtesy of Freeman Solt LLC
The construction of the building took between 2-3 years, and according to Robinson, its completion was achieved despite a great degree of difficulty. Robinson was very demanding of his design, and the architectural features of the building were well suited for the purposes of the school. The building was unique in its wheelchair ramps, central air conditioning, and the design concerning the windows.

It was Robinson’s strong beliefs that compelled him to design such a unique building. The first of which was his belief in equal access to education. Decades before any form of ADA standards existed, Robinson placed long and winding wheelchair ramps in the building. The fact that they were located in the two towers of the facade—the most prominent architectural feature of the building—emphasizes how strongly he felt about the matter.

Included in Robinson’s design was an central-air conditioning system. What was remarkable about the inclusion of this feature was that air-conditioning had been invented only 10 years before, and was mostly used in industrial refrigeration. Robinson believed that comfort was essential to the learning process, so he therefore took it upon himself to engineer the air-conditioning unit so that the school would be comfortable in the hot and humid months.
Despite its conventional style, the building reflects a forward-thinking mindset, utilizing large concrete lintels to serve as sills for a row of windows. Though the structure was designed and built well before the Modernist Movement, these large, engineered windows foreshadow the curtain-glass windows that would come to characterize architecture of the 20th century.

STRUCTURAL ANALYSIS

Construction Drawings courtesy of Freeman Solt LLC
How has hospital design developed around the world and throughout history? What factors have influenced this development? Did the development follow a clear evolutionary track, or has it been more of a conversation of competing ideas? Have any of these ideas transcended time, still being used today?

In order to move forward, we must understand where we have been, and whether there are any lessons to be learned from those moments. The rise and fall of competing cultures have undoubtedly introduced different ideas concerning architecture, but whether this applies to hospital design needs to be assessed. It could be that great ideas have been lost to the pages of history.
EVOLUTION OF THE HOSPITAL

Greek Asklepieon (Healing Temple)
Pergamon, Greece
450–500 BC

Cluny Abbey (Monastery)
Infirmary Expansion
Cluny, France
1043 AD

Early Persian Hospital (Persian Empire)
Junde-Shapur, Iran
800 AD

Roman Valetundinaria (Military Hospital)
Vindonissa--Roman Legion Camp
Windish, Switzerland
15 AD

Cross Ward (Greek Cross)
Opesdale Maggiore
Florence, Italy
1456

Palace-Style Hospital
France
17th Century

Hospitaliers (Knights of St. John)
Medieval Christian Crusade Hospital
Rhodes, Greece
1444–1483 AD

Pavillion-Style Hospital
Herbert Hospital
England
19th Century

Quadralectics.wordpress.com/3-contemplation/3-5-hospitals/
Considerable space and engineering were dedicated to the construction and design of the bathing facilities. Water had to be transported via aqueducts from local hot springs. If no hot spring were nearby, then other considerations had to be made in order to heat the water. Part of the bathing ritual was the long trek through a dark hallway, which ended at the baths. The path found at Pergamon is marked on the plan above.

DERIVED LESSON

Activities such as dieting, exercise, bathing, and exposure to nature are remedies that can decrease the dependency on invasive medical treatment.

These temples were the original healthcare facilities of the western world. Though Greek medicine was quite advanced for its time--including sleep-induced surgeries and prescription medicine--the priests that administered care favored natural remedies over radical intervention. These remedies included a strict diet, exercise, exposure to sunlight and nature, as well as rest and relaxation in the thermal baths. The priests believed that nature was a natural healer in itself. In this way, they provided holistic care beyond the limits of modern medical science.

DERIVED LESSON

Interior doors were not used in Roman design, so in order to keep out dust and noise, vestibules were included to act as a buffer between the patient rooms and corridors. These spaces were also utilized to house supplies and clean linens.

The Valetudinarium was the hospital of ancient Rome. Based on many of the ideas developed by the Greeks, the Romans removed the spiritual elements in favor of functional efficiency. The reason for this was that these facilities were primarily used by the military for soldiers. Therefore, efficient performance was the driving factor in the design decisions.

The most interesting of these design decisions was that of the vestibule. Interior doors were not used in Roman design, so in order to keep out dust and noise, vestibules were included to act as a buffer between the patient rooms and corridors. These spaces were also utilized to house supplies and clean linens.

DERIVED LESSON

An additional space between patient room and public space can not only serve as a buffer, but can also serve functional needs of the program.
Cluny Abbey (Monastery)
Infirmary Expansion
Cluny, France
1043 AD

Hospitaliers (Knights of St. John)
Medieval Christian Crusade Hospital
Rhodes, Greece
1444-1483 AD

DERIVED LESSON
While architectural design can help establish a connection to nature, there is no substitute for the real thing.

HOSPITAL OF THE SECOND KNIGHTS OF RHODES
RHODES, GREECE (1481)

Built in the 15th century by the Knights of St. John, this facility provides a glimpse of what might have become a standard in hospital design had it not been sacked by the Turks some 30 years after its completion. The Knights of St. John, also known as the Hospitaliers, were one of the many fighting forces that travelled east during the Crusades.

The Hospitaliers were akin to monks, having taken sacred vows to uphold their religion through physical force. They established a strong connection to nature, perhaps due to their spiritual beliefs, and so incorporated landscape design in their forts, palaces, and, in this case, a hospital. A 2-story central atrium and rooftop garden made of stone were the architectural manifestation of these ideals, while an expansive exterior garden provided walking paths in a more naturalistic setting.

Christian monks maintained cloister gardens, where they grew vegetables for food and herbs for medicine. When monasteries became the de facto health care facilities of the Middle Ages, these gardens also served as sitting areas, and were sometimes supplemented with walking paths. These areas became opportunities for patients to get outside and establish a physical connection with nature.

HOSPITAL OF THE SECOND KNIGHTS OF RHODES

Like the monks, the knights seemed to have an affinity for outdoor spaces, as opposed to the small herb gardens of monks. Their gardens were not only present in their hospital designs, but throughout their entire fortresses. This design principle created an interesting duality between the violent solidarity of a fort and the lush beauty of a garden landscape.
This project was designed in 2009 by NXT, who partnered with Clemson University’s Healthcare & Architecture Graduate Program. The concept is based on the question, “What would a patient room look like if the architecture, products, technology, and medical processes were all designed in unison?“ The idea was to “streamline the delivery of care, improve patient outcomes, and redefine the medical experience in the 21st Century.”

The modular design of the space allows for instruments, tools, and storage containers to be switched out with ease, so that a single room could be outfitted to meet the needs of a specific program. This idea of universal design is extended into the bathroom area, where the partition can slide to accommodate any patient, regardless of the amount of assistance needed.

The design is centered around the patient. All surfaces are finished in Corian, which is a non-porous material that’s easy to clean. The modular design of the space allows for instruments, tools, and storage containers to be switched out with ease, so that a single room could be outfitted to meet the needs of a specific program. This idea of universal design is extended into the bathroom area, where the partition can slide to accommodate any patient, regardless of the amount of assistance needed.

Though the project is as impressive as it is ambitious, I find the feel of the space to be too sterile. Despite the streamline design and sleek aesthetic, the space feels cold and uncomfortable--like a high-tech science lab. I would find it hard as a patient to relax in such a space.

Though a high-tech aesthetic can convey competence and a sense of security, too much of it can make a space feel cold and unwelcoming.
This project was designed in 2009 by NXT, who partnered with Clemson University's Healthcare & Architecture Graduate Program. The concept is based on the question, "What would a patient room look like if the architecture, products, tech, nursing, and medical processes were all designed in unison?"

The idea was to "streamline the delivery of care, improve patient outcomes and redefine the medical experience in the 21st Century."

DRIVING IDEA
Though a high-tech aesthetic can convey competence and a sense of security, too much of it can make a space feel cold and unwelcoming.
Though a high-tech aesthetic can convey competence and a sense of security, too much of it can make a space feel cold and uninviting.
The facility will serve as a neurological oncology facility. It will offer diagnostic, surgical, and radiology services. The facility will contain 80 beds for inpatient care, but will also emphasize outpatient care to the community.
The hospital in this project will be part of an Independent Physicians Association (IPA), a large corporate healthcare network, which focuses on generating profit for its shareholders. Unlike a large corporate healthcare network, which focuses on generating profit for their shareholders, an IPA is an organization of independently owned and operated medical practices.

Upon the formation of an IPA, the organization will typically hire an administrative staff that handles paperwork, referrals, and other communications between the practices. This staff does not necessarily hold a centralized authority over the practices, and is there for the benefit of the organization’s members, including the physicians and other administrative staff. It is important to note that the costs of a centralized administrative staff are not shared among the member practices.

According to Dr. Richard Graham, a local urological surgeon in Richmond, VA, and one of the most revered surgeons in the state, IPA’s possess a unique opportunity moving forward into the future. As mentioned before, when a doctor refers a patient to a large healthcare network, it is common for the patient to lose the referring doctor as the patient’s doctor, and the patient will need to see another doctor at the large network.

IPA’s can also serve as a political activist, lobbying to local government on behalf of its members. The collective voice of the IPA has more political influence than a chorus of individual practices. Though IPA’s were initially thought of as a method to create leverage against insurance companies to receive better reimbursement rates, this is actually illegal and a misconception. What the IPA does do is consolidate numerous practices in a given region into a single voice, empowering the doctors to exert political influence via grassroots movements.

According to Dr. Graham, in the near future, IPA’s will begin opening their own small hospitals that will house diagnostic equipment and the facilities needed for major surgery. Not only will this allow the doctors to purchase expensive equipment, splitting the costs among themselves, but they will also have a trusted facility to which they can refer their patients, all the while confident that they will not lose the patient’s business in the process.

The proposed hospital for this thesis project will be one of these small hospitals. Not only does the proposed hospital represent the typical size of a small hospital, it also demonstrates that small hospitals can be efficient and effective. Despite the smaller size, the hospital will have all the necessary facilities to provide high-quality care to its patients. It will have all the necessary equipment to perform procedures and surgeries, and the staff will be able to provide excellent care to its patients.

The hospital is designed to be a small, efficient facility that can handle the needs of the surrounding community. It will have all the necessary facilities to provide high-quality care to its patients, including emergency services, outpatient services, and inpatient care. The hospital will be designed to be energy-efficient and environmentally sustainable, reducing its impact on the environment.

In conclusion, the proposed hospital for this thesis project is a small, efficient facility that can handle the needs of the surrounding community. It will have all the necessary facilities to provide high-quality care to its patients, including emergency services, outpatient services, and inpatient care. The hospital will be designed to be energy-efficient and environmentally sustainable, reducing its impact on the environment. The hospital will be a valuable asset to the surrounding community, providing excellent care to its patients.
PATIENT ROOM (PRIVATE)

- Min. 200 SF
- Patient bed
- Headboard
- Overbed table
- Bedside storage for patient
- Bedside storage for nurse
- Natural light/views
- Cleanliness
- Shower/bath
- Toilet/bedpan
- Sink/mirror
- Isolation, when required
- Company, when appropriate
- Seating area
- Easy access to nurses, call, phone, lighting, bed, and TV controls
- Entertainment/distraction
- Computer with internet

COMMUNAL SPACE

- Education
 - Reading
 - Access to archived sources
 - Seminars
 - Scheduled for patients/families
 - Teaching art or horticulture
 - Counseling
 - Mentoring by doctor or nurse
- Therapy
 - Physical activity
 - Walking paths
 - Exercise/yoga classes
 - Thermal bathing
 - Mental
 - Reflection space
 - Horticulture
 - Group therapy
 - Counseling
- Socialize
 - Group gathering space
 - Staff, patients, or visitors
 - Small group meeting
 - One-on-one meeting
 - Dining space

NURSING UNIT

- Min. 150 SF for nursing station
- 1 station per 8 patient rooms
- Easy access to patients
- Ability to see patients
- Minimalized walking distances
- Control desk/call systems
- Charting desk
- Medication alcove
- Lockers/toilets
- Supervisors office
- Storage closet
- Supplies and equipment
- Treatment room
- Utility room–for clean/soiled operations
- Staff collaboration space
- Serving kitchen
- Ability to move beds, equipment, supplies, laundry in and out of rooms
- Minimum 6 ft width for corridors

INDEPENDENT

- Reading
- Walking
- Reflecting
- Art
- Bathing

INTERPERSONAL

- Mentoring
- Counseling
- Conference/Discussion
- Dining
- Bathing

GROUP

- Seminar
- Exercise/Yoga Class
- Group Therapy
- Group Visits
- Patient Gatherings
- Dining
- Bathing

PROGRAMMING THE SPACE

PROGRAMMING THE COMMUNAL SPACE

- Education
 - Reading
 - Access to archived sources
 - Seminars
 - Scheduled for patients/families
 - Teaching art or horticulture
 - Counseling
 - Mentoring by doctor or nurse
- Therapy
 - Physical activity
 - Walking paths
 - Exercise/yoga classes
 - Thermal bathing
 - Mental
 - Reflection space
 - Horticulture
 - Group therapy
 - Counseling
- Socialize
 - Group gathering space
 - Staff, patients, or visitors
 - Small group meeting
 - One-on-one meeting
 - Dining
 - Group bathing
BUBBLE DIAGRAMMING

AXON SHOWING SPATIAL ANALYSIS

4TH FLOOR PLAN
INTRODUCING THE CONCEPT

THE FOUR CRITICAL ELEMENTS OF HEALING

STRENGTH
REJUVENATION
REFLECTION
OPTIMISM

OVERALL PARTI DIAGRAM
HEALING GARDEN PARTI
STRATEGIES FOR INTERACTION BETWEEN ELEMENTS
CONCEPT DEVELOPMENT

ONE BOLD GESTURE

SUBSEQUENT GESTURES IN RESPONSE
CONCEPT MODEL #3
TWO TOWERS FLANKING
FOUR RIBS
ASSIGNING THE ELEMENTS

Each of the four healing elements correlates directly with an element of nature:

- **ASSIMILATION** (Air)
 - Articulation
 - Expression
 - Discovery
 - Combination
- **ENLIGHTENMENT** (Fire)
 - Creativity
 - Discovery
 - Encouragement
 - Fulfillment
- **REFLECTION** (Water)
 - Reflection
 - Absorption
 - Understanding
 - Communication
- **OPTIMISM** (Earth)
 - Encouragement
 - Guidance
 - Understanding
 - Fulfillment
CONCEPT MANIFESTATION

A SEATING CONDITION FOR EACH HEALING ELEMENT

A ROCK SOLID FOUNDATION--A CRADLE OF SUPPORT--A STUDY OF ERGONOMICS

A JOURNEY OF RECOVERY--A PATH OF ENLIGHTENMENT--A STUDY OF MATERIALITY
CONCEPT MANIFESTATION

A SEATING CONDITION FOR EACH HEALING ELEMENT

A MOMENT OF THOUGHT -- A MOMENT OF INSPIRATION -- A STUDY OF EXPERIENTIAL CONDITIONS

CIRCULAR DESIGN PROMOTES INTRAREFLECTION -- NO EYE CONTACT

A BRIGHT MOMENT OF JOY -- THE INSPIRATION TO LIVE -- A STUDY OF FORM

info.marbleandgranite.com/blog/?Tag=soapstone+wholesaler+new+england
CREATING THE SPACE

PROJECT SCOPE

EXISTING BUILDING

NORTH FACADE

REMOVE EXISTING ROOF

REPLACE WITH GLASS ROOF

EXISTING STRUCTURE

OUTSIDE OF SCOPE

EXISTING BUILDING

SOUTH FACADE

ADD TWO 12’ X 12’ MEZANINE DECKS TO FOURTH FLOOR

OVERLOOKING AUDITORIUM

EXISTING STRUCTURE

DEMOLISH REAR FACADE AND INTERIOR AUDITORIUM WALL

NEW STRUCTURE

NEW STRUCTURE THAT FOLLOWS EXISTING STRUCTURAL GRID
PATIENT ROOM/ NURSE STATION

DIAGRAM SHOWING INTERSTITIAL SPACE

DIAGRAM OF SLIDING SHELF UNIT
Can a balance be struck between the duality of nature and technology to achieve a healing space that demands less in terms of medical intervention? Strong enough to protect, gentle enough to nurture. A house for life's most joyful and most tragic moments. Provide total privacy while being completely transparent. Constant communication, as well as reflection. Harbor the sick, but attract the healthy. A place that has all of the answers, but is always asking new questions. A place of happiness that is never content. A temple of science that requires leaps of faith. A hospital is inherently a creature of duality. It must be many things, simultaneously; many of which are contrasting characteristics.
THANK YOU

To my friends, family, and professors who supported me through this rigorous process.