2014

Lucky Strike House: The Space Between

Monika Shreves
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

Part of the Interior Architecture Commons

© The Author

Downloaded from
https://scholarscompass.vcu.edu/etd/3659

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Monika Shreves | Master of Fine Arts | Virginia Commonwealth University | December 2014

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Fine Arts in Interior Environments at Virginia Commonwealth University.

Camden Whitehead, Advisor, Associate Professor
Department of Interior Design, Virginia Commonwealth University

Emily Smith, Advisor, Adjunct Professor
Department of Interior Design, Virginia Commonwealth University

Rab McClure, Advisor, Associate Professor
Department of Interior Design, Virginia Commonwealth University
abstract

With the onset of one of the worst economic downturns in recent history, the face of poverty is changing. This project seeks to explore a design solution aimed at helping a newly-emerging segment of the population: the "half homeless", formerly middle-class individuals/families who lost their jobs and homes during the recession.

Set in the building known as the Lucky Strike Power Plant, the project contains two distinct, but overlapping, programs: 1) multi-family housing, and 2) a continuum of supportive services accessible to both the residents and the community at large.

The main focus of this project is the housing component, more specifically, exploring an unconventional housing typology designed to encourage interaction between the residents, as well as the residents and non-residents. Ultimately, this project is a study of how, through the interplay between public vs. private and mass vs. void, design can heal, inspire, and bring people together.
<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manifesto</td>
<td>9</td>
</tr>
<tr>
<td>Introduction</td>
<td>11</td>
</tr>
<tr>
<td>Site</td>
<td>16</td>
</tr>
<tr>
<td>Precedents</td>
<td>40</td>
</tr>
<tr>
<td>Program</td>
<td>60</td>
</tr>
<tr>
<td>Concept/Design Development</td>
<td>66</td>
</tr>
<tr>
<td>Final Design</td>
<td>92</td>
</tr>
<tr>
<td>Appendix</td>
<td>112</td>
</tr>
</tbody>
</table>
I believe...

...that design has the power to shape the world around us. Buildings are civilization’s footprints. Though the interior may recede into the background at times, its subtle power to shape is not to be underestimated. They say everything is a product of its environment. After all, and designers are the builders of these environments. It is a unique and exciting position to be in.

I believe that design is elevated above fine art. Design is beautiful and expresses an artist’s vision. However, it is also functional and must serve a purpose. This creates a multitude of interesting and challenging problems that do not exist in fine art, where there is often a disconnect between the artist’s intention and the experience of the viewer. Good design is the perfect combination of art and pragmatism: of left brain and right brain. The needs of the user are paramount to the need of the artist to express himself or herself. Aesthetic beauty is not enough; the design must, above all, work.

Finally, I believe in simplicity in design, and finding moments of complexity within that simplicity. Something does not have to be complicated for it to be beautiful or “better.” Sometimes the smallest, seemingly most insignificant design decisions are the ones that have the greatest impact. Discovering and developing those layers of richness within an outwardly straightforward design can be one of the most rewarding experiences as a designer.
code overlay

address
2700 E Cary Street
Richmond, VA 23223

year built
1930

use/occupancy
R-4 (Residential)

occupancy load
90.0

means of egress
2 fire stairs, 1 elevator

general building heights
IBC Table 503 and Section 504.2 allow for 4 stories with sprinkler or alternate fire extinguishing system and voice alarm communication system, Section 907.212.2

fire suppression system
Sprinkler

type of construction
IBC Type II Construction
Design shapes experiences, experiences shape people. If this assertion is true, how can the power of design be harnessed for the greater good?

The word "homeless" tends to conjure up mental images of a bum sitting on a street corner begging for change. But the face of homelessness is changing. With the onset of one of the worst economic downturns in recent American history, a new group has fallen victim to the homeless epidemic: the middle class.

An injury, a default, a delinquent mortgage, a late rent payment: one too many. These days, that's all it takes. Before they knew it, these people—often educated homeowners with families, jobs, credit cards, and cars—find themselves turned out on the street. Staying with relatives and friends can only go on for so long, and soon they are sleeping in their cars, still unable to come to grips with the fact that they, in one fell swoop, have lost everything.

This subpopulation faces a unique set of issues, physically, mentally, and emotionally. They are often the last to seek help, purely out of pride and an unwillingness to associate themselves with "those people". Making concrete statistics on this relatively new group is hard to come by. They are usually educated, but suddenly lack access to the technology, professional attire, hygiene, and even the permanent address to put down on a resume needed to successfully secure employment. The abruptness of their removal from an otherwise normal life results in a devastating loss of identity and sense of security. They are the "half homeless", and all of the above factors combined result in them being an incredibly underserved segment of the homeless population.

This project seeks to cater to these individuals and their unique set of needs. It seeks to help those who have fallen upon a hard time get back on their feet and, maybe one day, house them, in a unique housing situation that prioritizes communal space.
at a glance

site

This project is housed in the Lucky Strike Power Plant, an 18,500 square foot cube-shaped building that once housed the generators for the neighboring Lucky Strike Factory. The building is located at 2700 East Cary Street in the Shockoe Bottom neighborhood of Richmond, Virginia, adjacent to the James River.

program

Low-income multi-family housing with various on-site supportive services aimed at this particular segment of the population (career counseling, computer lab, classroom space, etc.). These services would be available to both the residents and those in need in the community at large. The major goal is to implement a design solution that will encourage interaction and foster a sense of community both among residents and among residents and non-residents using the services.
name
Power plant @ Lucky Strike

year built
1930 (remodeled in 2009)

current square footage
18,500 sq. ft.

past use
Power plant for Lucky Strike cigarette factory next door

current use
Office space
address
2700 East Cary Street, Richmond, VA

neighborhood
Shockoe Bottom

notable features
On Tobacco Row
Across from Great Shiplock Park
Adjacent to the James River
Construction on the Lucky Strike Chewing Tobacco and Cigarette Factory is completed. The factory is located on the Eastern end of Tobacco Row, a string of tobacco warehouses and factories along the James River that began cropping up in the late 1800s, when Virginia was considered the tobacco capital of the country.

Due to the decline of the once-thriving tobacco industry, the Lucky Strike Factory, in step with the five other large warehouses/factories on Tobacco Row, closes its doors for good. The building sits abandoned for over a decade.

Renovations begin on Tobacco Row as part of an initiative to revitalize the dilapidated industrial downtown of Richmond. As a result of these efforts, the long-blighted warehouses are one by one converted into luxury apartments, retail spaces, restaurants, and offices, including the Lucky Strike Factory. The power plant, however, remains untouched.

Renovations are completed, with the offices of Odell Associates occupying 15,000 of the 18,500 square foot building. The space is lauded as a model adaptive reuse project, with the soaring windows, original concrete floors, masonry work, and other historical features left intact.
As it exists now, the Lucky Strike Power Plant is currently being used as office space, with Odell Associates occupying the whole second and third mezzanine levels, in addition to the northwest half of the first level. The southeast half of the first level is currently unoccupied space suitable for a future office tenant. The design of Odell’s office is extremely open, with minimal added partitions, celebrating the vast, volumetric ceilings, the original exposed brick, and the abundance of natural light.
South and West exterior elevations of existing building
North and East exterior elevations of existing building

Site / as-built drawings / 26

Site / as-built drawings / 27
28.1 Section of the existing building looking north
29.1 Section of the existing building looking east
These simple diagrams explore the basic geometries and proportions of the plan. When simplified, the building footprint is almost a perfect square.
These diagrams seek to find implied datum lines using the grids created by the columns (far left), the start and stop points of glazing (middle), and the structural grid (right, with the red dashed lines indicating structural ceiling elements such as posts and beams).
Given the amount of windows in the space, it became important to examine the proportion of glazing to solid exterior wall, as well as the symmetry of the window openings themselves. Overlaying the front/back elevations and the left/right elevations of the building facades revealed that the openings are almost exactly lined up.
The building is built into the side of a hill, with a considerable grade change occurring as you move from the south facade facing East Cary Street to the north facade in the back. This allows direct access to the exterior from the second floor.
With the soaring 34-foot tall windows and massive skylights spanning the ceiling, the building is flooded with an abundance of natural light. The southern corner gets the most exposure, with the sun path ending up being a major design driver when it came time to space plan.
la tourette

The Convent of La Tourette, designed by Le Corbusier, was designed to adapt to the unique lifestyle of a community of silent monks, with the program consisting of one hundred individual cells, communal libraries, lecture halls, a refectory, a small chapel, a series of cloisters, and a church.

Though the program is different from the project at hand for obvious reasons, the coexistence of residential spaces and public spaces open to the larger community all housed under one roof was relevant to my programmatic exploration. The diagrams on the following pages look at the relationships between the individual vs. group spaces and public vs. private spaces.
Programmatically, La Tourette gradates vertically from public to private, with the most public spaces (church, altar, main circulation, open air courtyards, all of which are open to the general community) located on the first floor, the semi-private spaces (located on the second floor, libraries, lecture halls, common rooms, all for use by the residents), and finally, the monks’ cells, the most private spaces of all, being located on the third floor. The diagrams on the next pages illustrate the separation of spaces in plan.

The building itself has a unique footprint, the stacking of each distinct floor plate creating interesting overlaps and layers. Some of the most public spaces are also created by voids in the massing, such as the open air courtyards, defined only by the edges of the enclosed circulation around them. The watercolor diagram adjacent explores this layering effect, utilizing the transparency of the medium to identify the overlaps between the three floors.
The Birkimork Halfway House in Iceland consists of apartments and staff quarters for five severely handicapped teenagers. The program and space itself are simple and small: it consists of only five small apartments for the residents, a communal washroom, lounge areas, and shared courtyards.

This case study was an offshoot of the La Tourette precedent. Similarly, it mixes a residential component with more social components, with common space figuring prominently, as with the program in this thesis. It was easier to look at these dichotomies and parts within the confines of such a small, contained program.

birkimork halfway house

location

Hveragoi, Iceland

use

Housing for handicapped teenagers

year built

2006

designer

PK Arkitektar

The Birkimork Halfway House in Iceland consists of apartments and staff quarters for five severely handicapped teenagers. The program and space itself are simple and small: it consists of only five small apartments for the residents, a communal washroom, lounge areas, and shared courtyards.

This case study was an offshoot of the La Tourette precedent. Similarly, it mixes a residential component with more social components, with common space figuring prominently, as with the program in this thesis. It was easier to look at these dichotomies and parts within the confines of such a small, contained program.
The same criteria was used to diagram the Birkimork Halfway House as with La Tourette, with one diagram exploring the relationships of the public vs. private spaces, and the other exploring those of spaces that were individual vs. collective.

The parti is such that it seems the most private spaces are at the innermost part of the building flanking one long central corridor, with the more public spaces wrapping around the individual units on either side. The ability to access the shared courtyard spaces from each individual apartment provides the residents with the freedom to be social when they choose, and similarly, to withdraw as well.
These "mini" case studies, though simple, ended up highly influencing the final thesis design. I analyzed the floor plans of two of Alvar Aalto's works: the Malmi Funeral Chapel and the Athletics Department of the University of Jyvaskyla. Aalto was known for creating interior landscapes of sorts within his buildings, filling up volumetric space with "buildings within buildings" with the space between these masses becoming public/circulation areas.

The diagrams to the right are explorations of the parts and massing found in both floor plans. Each floor plan is unique; however, both plans indicate an organization based around three main volumes, indicated by the gray hatch in these diagrams. The spaces around these masses are defined by the edges of the masses themselves, as opposed to having their own individual definition. This became extremely relevant in my thesis design conceptual development.

Selected Works of Alvar Aalto

Project Names
- Malmi Funeral Chapel (L)
- University of Jyvaskyla - Athletics Department (R)

Location
- Helsinki, Finland (L)
- Jyväskylä, Finland (R)

Use
- Funeral chapel (L)
- University athletic department (R)

Year Built
- Never built (L)
- 1959 (R)

Designer
- Alvar Aalto
The Netherlands Institute for Sound and Vision is a museum for all audiovisual material produced in the Netherlands from the onset of Dutch radio/TV. There are three main components to the program: the exhibition space for the museum, archives, and staff offices. This ended up becoming an important case study for this project, as these are parallels with both concept and with site.

Conceptually, this precedent built upon the discoveries from the previous Alvar Aalto mini case studies. This project, too, uses three distinct masses as a primary organizer, with the space between the volumes serving as the main public/circulation space. In this case, each of the masses is assigned a different part of the program, with one containing the museum exhibitions, one containing the archives, and the last holding staff offices and other back-of-house activity.

Like in the Aalto studies, the edges of these pieces of “micro-architecture” within the overall building mass are defined by the space between them, an atrium space. Unlike the Aalto studies, however, the overall building shape is very similar to that of the Lucky Strike Power Plant: almost a perfect cube. This made it possible to explore this concept in a way that felt very grounded in the site, understanding how this concept of public area being defined as the space between two things could be played out in section as well as in plan, taking advantage of the volumetric nature of the overall shell.

netherlands institute for sound & vision

location
Hilversum, Netherlands

use
Museum and archives

year built
2009

designer
Neutelings Riedijk Architects

View of the grand atrium, defined by the edges of the volumes surrounding it

Alternate view of the atrium (opposite page; left to right)
This watercolor diagram was created by first assigning a color to each mass/part of the program, overlaying the programmatic parts of all 13 floors in the building to study the overlaps created by the different floor plates. This hearkened back to the La Tourette case study in certain ways. As with that case study, the transparency of a medium really allowed me to build up color and more easily see the proportion of solid floor plate to void. When a building is volumetric (as the Lucky Strike Power Plant is), building up instead of out becomes important. The layered, open effect in plan was something that ended up figuring prominently in the final design of this thesis.
The watercolor diagrams on the adjacent page are explorations of the nature of the space in section, again with each color representing an organizing volume, and subsequently, a different part of the program. The white space represents the space between the volumes, with this void becoming the public space.

As stated before, these diagrams were extremely helpful in terms of helping me look at how this concept could be applied to a large, volumetric building, where section is equally as important as plan. The overlaps and layers created, as mentioned on the previous page, hearken back to the La Tourette case study. The openness of the space also allows visual access to all three parts of the program, an orienting device that became important in this thesis project.
This project is made up of three separate, but overlapping, program components:

1) **staff offices**
2) **low-income multi-family housing**
 - studios
 - 2 bedrooms
 - 3 bedrooms
 - common spaces
3) **a continuum of supportive services**
 - 24-hour services (locker rooms, storage, kitchen, laundry)
 - other supportive services (computer lab, library, classroom, career services, childcare, etc.)

The remaining square footage, though not listed as a programmatic element, is the space created by the edges of the above three areas: the space between, a large atrium that serves as main circulation and public space.

The project was designed to have a significant chunk of space dedicated to public, communal areas vs. private areas, at both the overall building level and the individual apartment level. The apartment level is what was explored the most thoroughly in this project, though it was important to understand the other programmatic elements as they play in the overall project.

overall program

<table>
<thead>
<tr>
<th>Component</th>
<th>Overall Program</th>
<th>24-hour</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staff offices</td>
<td>451 sf</td>
<td>63 sf</td>
<td>368 sf</td>
</tr>
<tr>
<td>Low-income multi-family housing</td>
<td>837 sf</td>
<td>165 sf</td>
<td>652 sf</td>
</tr>
<tr>
<td>Supportive services</td>
<td>1,129 sf</td>
<td>165 sf</td>
<td>964 sf</td>
</tr>
<tr>
<td>Total</td>
<td>4,834 sf</td>
<td>330 sf</td>
<td>2,750 sf</td>
</tr>
</tbody>
</table>

As you can see, a significant chunk of space is dedicated to public, communal areas vs. private areas, at both the overall building level and the individual apartment level. The apartment level is what was explored the most thoroughly in the project, though it was important to understand the other programmatic elements as they play in the overall project.
Diagrams that explore the relationships and interplay between the different programmatic elements at the scale of the overall building, on both more conceptual and formal levels.
In times of need, we turn to our neighbors for kindness and support. Similar to the conceptual case studies discussed in the previous section, I sought to create a “town within a building,” an interior landscape that created a communal, neighborhood-like feeling between the apartment residents at the micro level, and between the residents and non-resident users of the building at the macro level. This exploration began by diagramming the physical plans of actual towns, focusing specifically on the public spaces within them.

How can circulation form interior streets?

How can the “space between” things act as the public spaces, similar to how the edges of buildings form plazas and other urban places of gathering? And how can these ideas also be applied in section, vs. in plan to take advantage of the volumetric condition of the overall space?

Similarly, what types of edge conditions either blur or solidify the line between public and private spaces? How can design aid in giving users choice and control in terms of varying degrees of exposure?
Continuing to be inspired by the idea of creating a “town within a building”, I discovered that throughout history, human settlement patterns show buildings tending to spring up along one main, linear street, also known as a “ribbon development”. The visual nature of the word immediately posed the questions:

- How can the concept of the “ribbon” be applied to interior space in terms of circulation?
- More specifically, how can this idea, which so clearly evokes long, linear imagery, work within a tall, volumetric mass?
- Could one “wrap” the ribbon upwards throughout the building, folding over onto itself as part of the vertical circulation?

The following series of diagrams document my initial exploration of the ribbon and how it could be applied architecturally.
A later concept model more concretely exploring the language of the ribbon and how it could be applied in a manner that fit the site. In this iteration, the ribbon manifested itself as a series of winding ramps connecting open mezzanines.
As stated previously, the overall program consists of three parts: 1) staff offices, 2) multi-family housing, and 3) supportive services meant to serve residents as well as the larger community. Though the main focus of the project was the individual apartment units and the relationships between them, it was important to explore the relationships between the housing component and the other programmatic aspects as well and to never lose sight of the whole. How could these three components coexist in the same large space, maintaining separation and privacy while still encouraging interaction and overlap?

The concept models and diagrams on these pages show my initial attempts at experimenting with the relationships between these programmatic elements, always trying to keep in mind the spaces between that could serve as public places of gathering.
Given the volumetric nature of the site, as in the case studies, it was always important to constantly be space planning in section as well. These diagrams show early overall schematic design development, some beginning to incorporate the conceptual “ribbon” language in terms of vertical circulation up through the space. One diagram (top left) poses the possibility of creating a light well using an existing skylight, an element which would end up being a major factor in the design of the apartments later on.
Honing in on the project’s multi-family housing component, how could the idea of the space between the edges of private areas becoming communal be applied at a smaller scale? How can design foster relationships and encourage interaction in housing, a typically more individual, private experience in today’s world? The diagrams above illustrate my early experimentation with creating an interlocking housing module, with dedicated communal space existing in the place where the private spaces overlap.
3-D iteration of the previous diagrams conceptually showing how shared space between apartments is created and defined by the overlapping edges of the individual units.
The next step was taking the conceptual idea of creating apartments with nesting communal spaces and applying it in a manner true to the site. The diagrams on the adjacent page show different schemes experimented with, considering both the relationships between the apartments themselves as well as the individual spaces within the private units. The final scheme heavily pulled from the bottom diagrams.
The diagrams below show the initial stages of solidifying the final scheme. The design features an interlocking unit system similar to the original conceptual idea. Private apartments wrap around shared communal spaces. The existing column grid and the massive skylight overhead (on which the shared courtyards between apartments are centered) played a major role in dictating the placement of partitions and edges of spaces. As a whole, the multi-family component sits in the northwest half of the building.
A rough diagrammatic axon showing the relationships (both vertically and horizontally) between all of the units and the shared spaces between them. As the sectional link between all the apartments is equally important, it was helpful to work in three dimensions whenever possible.
It was important to me that the communal areas between the apartments feel special and inviting. Hence, inspired by light wells such as the one above of Steven Holl’s MIT dormitory, I ended up placing them directly beneath the long skylights in the existing structure. This transformed these areas into spaces that truly brought the outside in, with natural light flooding in through the glass.

However, though communal space was given priority, residents would need some control over the privacy levels in their space in order not to feel too exposed to their neighbors. How could one enclose the space while still blurring the line between public and private? The sketches to the right show my initial ideas on different kinds of partitions and screening methods.
Early sketch further exploring screening options; this time, to provide tenants with control over the degree of privacy they experience from the public atrium facing side of their homes.
The final overall design was kept at a schematic level for the purposes of this project. The space between the multi-family housing component/staff offices (housed in the northwest half of the building under the lower ceilings) and the services component (housed in the southeast half under the taller ceilings) makes up the large communal atrium, a gathering space flooded with natural light due to its southern exposure. The void in the plan between two volumes therefore becomes a place of gathering and houses the main circulation—a ribbon staircase that winds up through the towering space.
Inspired by the "ribbon" housing development terminology, the ungulating, monolithic central staircase in the atrium helps create an interior landscape, of sorts. The wide landings double as bridges to the apartments, serving as the connecting artery, or "main street", between the two halves of the building, and consequently, the residents and the non-residents. The stacked, layered mezzanines that make up the floor plates of the services half of the building provide visual connections to the whole from any vantage point.
The final floor plans of the units show a continuum of public and private spaces. Shaped entry vestibules on both floors encourage more run-ins with your neighbor than the typical double-loaded corridor set-up one often sees in housing. Balconies facing the atrium also provide a visual connection to the more public spaces that lie beyond the apartment walls. On the second floor, the two bedrooms and studios wrap around shared light courtyards, with a separate balcony/sun room space shared between the studios. On the third floor, two three-bedroom units have balcony access to overlook the shaded courtyards below, as well as communal space between their individual units in the form of an open mezzanine.
As stated previously, the massive skylight in the existing structure serves as the organizer for the communal spaces: 1) the shared light courtyards connecting the two bedrooms and studio, and 2) the mezzanine space shared between the three bedrooms. The massive skylight overhead, the sunken floor, the material change to wood, and the built-in bench seating and planters all aid in creating the feel of being outside on a back deck or patio, a perfect place to socialize with family and neighbors alike. Though these indoor areas also act as communal spaces on a smaller scale, the entire open region beneath the skylight visually connects all six units.
Two partition elements in the design help blur the line between public and private, with one type shielding the exterior wall of the units facing into the public atrium, and the other dividing the shared light well from the private units.

A "second skin" of perforated stainless steel panels cover the atrium-facing side of the apartments, effectively providing privacy while letting the natural light coming in from the massive 30 foot existing windows. These panels are operable, capable of being open and shut like shutters, giving the residents control over their space's degree of privacy relative to the public half of the building.

Within the units themselves, movable slide-and-fold doors consisting of both transparent and translucent glass panels make a variety of configurations possible. Again, by making the degree of open vs. closed partitions completely customizable, the tenants have full control over the level of privacy they experience, from completely closed off to fully merging their spaces into one if they so choose.
Final design / checking back to concept / 104

Overall

Mass

The space between

Apartments
106.1 View of front exterior of model
107.1 Aerial view of model
108.1 View down from the stacked mezzanines of services half of building
109.1 View of shared light courtyard in units
109.2 Partial view of third floor unit
With the onset of one of the worst economic downturns in recent American history, the face of poverty is changing. This project seeks to explore a design solution aimed at helping a newly emerging and vastly underserved segment of the homeless population: the “half homeless,” formerly middle class individuals and families who lost their jobs and homes during the Great Recession. Set in the building formerly known as the Lucky Strike Power Plant in Shockoe Bottom, the newly-christened Lucky Strike House will contain two distinct, but overlapping, programs: 1) low-income multi-family housing, and 2) a continuum of supportive services made available to the residents as well as the larger community. The focus of this project is on the housing component; more specifically, exploring an unconventional housing typology designed to encourage interaction and foster a sense of community among the residents, as well as between the residents and the non-residents. Ultimately, this project is a study of how through the interplay and overlaps between public vs. private, group vs. individual, and volume vs. void, design can heal, inspire and bring people together in times of hardship.

Inspired by the “ribbon” housing development terminology used to refer to a main street, the ungulating, monolithic central staircase in the atrium helps create an interior landscape, adding to the “town within a building” feel. The wide landings double as bridges to the apartments, serving as the connecting artery between the two halves of the building, and consequently, the residents and the non-residents.
All images belong to Monika Shreves unless otherwise noted below:

21.1 google maps
21.2 google maps
22.1 nps.gov
22.2 VCU archives & special collections
23.1 odell associates
24.1 odell associates
24.2 odell associates
24.3 odell associates
26.1 odell associates
26.2 odell associates
27.1 odell associates
27.2 odell associates
28.1 odell associates
29.1 odell associates
43.1 archdaily.com
43.2 archdaily.com
43.3 archdaily.com
48.1 archdaily.com
48.2 archdaily.com
48.3 archdaily.com
54.1 architecturenewsplus.com
54.2 architecturenewsplus.com
56.1 architecturenewsplus.com
66.1 townsandcities.org
68.1 townsandcities.org
thank you

...to my wonderful family and friends for always supporting me in everything that I do.

...to all of my professors and advisors for teaching me everything I know about design and for helping me through this project. Camden, Emily, Nabi, Christiana, and Rob in particular—thank you so much for everything!

...to my classmates/second family for the past two years. Could not have survived any of those hellacious all-nighters in studio without your company (and some Jock Jams Pandora, of course). I miss getting to see you all every day!