Document Type


Original Publication Date


Journal/Book/Conference Title

Nucleic Acids Research,





First Page


Last Page


DOI of Original Publication



Originally published at

Funded in part by the VCU Libraries Open Access Publishing Fund.

Date of Submission

October 2019


The cytosine (C)-rich sequences that can fold into tetraplex structures known as i-motif are prevalent in genomic DNA. Recent studies of i-motif–forming sequences have shown increasing evidence of their roles in gene regulation. However, most of these studies have been performed in short single-stranded oligonucleotides, far from the intracellular environment. In cells, i-motif–forming sequences are flanked by DNA duplexes and packed in the genome. Therefore, exploring the conformational dynamics and kinetics of i-motif under such topologically constrained environments is highly relevant in predicting their biological roles. Using single-molecule fluorescence analysis of self-assembled DNA duplexes and nanocircles, we show that the topological environments play a key role on i-motif stability and dynamics. While the human telomere sequence (C3TAA)3C3 assumes i-motif structure at pH 5.5 regardless of topological constraint, it undergoes conformational dynamics among unfolded, partially folded and fully folded states at pH 6.5. The lifetimes of i-motif and the partially folded state at pH 6.5 were determined to be 6 ± 2 and 31 ± 11 s, respectively. Consistent with the partially folded state observed in fluorescence analysis, interrogation of current versus time traces obtained from nanopore analysis at pH 6.5 shows long-lived shallow blockades with a mean lifetime of 25 ± 6 s. Such lifetimes are sufficient for the i-motif and partially folded states to interact with proteins to modulate cellular processes.


© The Author(s) 2019. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Is Part Of

VCU Chemistry Publications

Included in

Chemistry Commons