Document Type

Conference Proceeding

Original Publication Date


Journal/Book/Conference Title

SPIE Micro+Nano Materials, Devices, and Applications



DOI of Original Publication



Originally published in Proceedings of SPIE. Gregory E. Triplett, “Extending device performance in photonic devices using piezoelectric properties," Proc. SPIE 8923, Micro/Nano Materials, Devices, and Systems, 892324 (7 December 2013). DOI:

Date of Submission

July 2018


This study focuses on the influence of epi-layer strain and piezoelectric effects in asymmetric GaInAs/GaAlAs action regions that potentially lead to intra-cavity frequency mixing. The theoretical limits for conduction and valence band offsets in lattice-matched semiconductor structures have resulted in the deployment of non-traditional approaches such as strain compensation to extend wavelength in intersubband devices, where strain limits are related to misfit dislocation generation. Strain and piezoelectric effects have been studied and verified using select photonic device designs. Metrics under this effort also included dipole strength, oscillator strength, and offset of energy transitions, which are strongly correlated with induced piezoelectric effects. Unique photonic designs were simulated, modeled, and then fabricated using solid-source molecular beam epitaxy into photonic devices. The initial designs produce "lambda" wavelength, and the introduction of the piezoelectric effect resulted in "lambda/2" wavelength. More importantly, this work demonstrates that the theoretical cutoff wavelength in intersubband lasers can be overcome.


Copyright 2013 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Is Part Of

VCU Electrical and Computer Engineering Publications