DOI

https://doi.org/10.25772/G9DM-AF78

Defense Date

2006

Document Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Chemistry

First Advisor

Dr. Sarah C. Rutan

Abstract

In the first part of this work, LC-MS data were used to calculate the in-vitro intrinsic clearances (CLint) for the metabolism of p-methoxyrnethamphetamine (PMMA) and fluoxetine by the CYP2D6 enzyme using a steady-state (SS) approach and a new general enzyme (GE) screening method. For PMMA, the SS experiment resulted in a CLint of 2.7 ± 0.2 µL pmol 2D6-1min-1 and the GE experiment resulted in a CLint of 3.0 ± 0.6 µL pmol 2D6-1min-1. For fluoxetine, the SS experiment resulted in a CLint of 0.33 ± 0.17 µL pmol 2D6-1min-1 and the GE experiment resulted in a CLint of 0.188 ± 0.013 µL pmol 2D6-1min-1. The inhibition of PMMA metabolism by fluoxetine was also demonstrated.In the second part of the work, target factor analysis was used as part of a library search algorithm for the identification of drugs in LC-DAD chromatograms. The ability to resolve highly overlapped peaks using the spectral data afforded by the DAD is what distinguished this method from conventional library searching methods. A validation data set of 70 chromatograms was used to calculate the sensitivity (correct identification of positives) and specificity (correct identification of negatives) of the method, which were 92% and 94% respectively.Finally, the last part of the work shows the development of data analysis methods for four-way data generated by two-dimensional liquid chromatography separations with DAD. Maize seedlings were analyzed, specifically focusing on indole-3-acetic acid (IAA) and related compounds. Window target testing factor analysis was used to identify the spectral groups represented by the standards in the mutant and wild-type chromatograms. Two curve resolution algorithms were applied to resolve overlapped components in the data and to demonstrate the quantitative potential of these methods. A total of 95 peaks were resolved. Of those peaks, 45 were found in both the mutant and wild-type maize, 16 peaks were unique to the mutants, 13 peaks were unique to the wild-types, and the remaining peaks were standards. Several IAA conjugates were quantified in the maize samples at levels of 0.3 - 2 µg/g plant material.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

June 2008

Included in

Chemistry Commons

Share

COinS