Defense Date


Document Type


Degree Name

Doctor of Philosophy



First Advisor

Kellie Archer


One situation in survival analysis is that the failure of an individual can happen because of one of multiple distinct causes. Survival data generated in this scenario are commonly referred to as competing risks data. One of the major tasks, when examining survival data, is to assess the dependence of survival time on explanatory variables. In competing risks, as with ordinary univariate survival data, there may be explanatory variables associated with the risks raised from the different causes being studied. The same variable might have different degrees of influence on the risks due to different causes. Given a set of explanatory variables, it is of interest to identify the subset of variables that are significantly associated with the risk corresponding to each failure cause. In this project, we develop a statistical methodology to achieve this purpose, that is, to perform variable selection in the presence of competing risks survival data. Asymptotic properties of the model and empirical simulation results for evaluation of the model performance are provided. One important feature of our method, which is based on the idea of the L1 penalized Cox model, is the ability to perform variable selection in situations where we have high-dimensional explanatory variables, i.e. the number of explanatory variables is larger than the number of observations. The method was applied on a real dataset originated from the National Institutes of Health funded project "Genes related to hepatocellular carcinoma progression in living donor and deceased donor liver transplant'' to identify genes that might be relevant to tumor progression in hepatitis C virus (HCV) infected patients diagnosed with hepatocellular carcinoma (HCC). The gene expression was measured on Affymetrix GeneChip microarrays. Based on the current available 46 samples, 42 genes show very strong association with tumor progression and deserve to be further investigated for their clinical implications in prognosis of progression on patients diagnosed with HCV and HCC.


© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

December 2008

Included in

Biostatistics Commons