DOI

https://doi.org/10.25772/NZWQ-R095

Defense Date

2009

Document Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Physiology

First Advisor

Paul Ratz

Abstract

It is well known that the overlap between the thick and thin filaments in striated muscle is responsible for the single active length-tension (L-T) curve. With the lack of visible striations, a sarcomeric unit has not been identified in smooth muscle. Though once thought to function like striated muscle via a sliding filament mechanism of contraction, recent studies on length-adaptation (L-adaptation) in airway smooth muscle (ASM), in which increased tension is generated with repeated contraction, have led to the hypothesis of a dynamic L-T curve in smooth muscle. Although more established in ASM, two studies have shown L-adaptation in vascular smooth muscle (VSM). In this project, the L-T curve over a 3-fold length range in rabbit femoral artery was investigated and the presence of more than one active and passive L-T curve was identified. The third of three repeated KCL-induced contractions at a single, shortened length resulted in L-adaptation in which the phasic and tonic phases of contraction demonstrated a 10-15% increase in active tension (Ta) relative to the first contraction. Experiments investigating possible mechanism(s) responsible for this phenomenon demonstrated that neither an increase in [Ca2+]i nor an increase in MLC20 phosphorylation was responsible for the increased tension. However, actin polymerization did appear to play a role in the L-adaptation of both phases of contraction. Thus directions for future research could include further study of actin polymerization in VSM that contributes to L-adaptation and may ultimately result in artery remodeling.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

August 2009

Included in

Physiology Commons

Share

COinS