Defense Date


Document Type


Degree Name

Master of Science


Biomedical Engineering

First Advisor

Ding-Yu Fei

Second Advisor

Ou Bai

Third Advisor

Azhar Rafiq


This study aims to explore whether human intentions to move or cease to move right and left hands can be decoded from spatiotemporal features in non-invasive electroencephalography (EEG) in order to control a discrete two-dimensional cursor movement for a potential multi-dimensional Brain-Computer interface (BCI). Five naïve subjects performed either sustaining or stopping a motor task with time locking to a predefined time window by using motor execution with physical movement or motor imagery. Spatial filtering, temporal filtering, feature selection and classification methods were explored. The performance of the proposed BCI was evaluated by both offline classification and online two-dimensional cursor control. Event-related desynchronization (ERD) and post-movement event-related synchronization (ERS) were observed on the contralateral hemisphere to the hand moved for both motor execution and motor imagery. Feature analysis showed that EEG beta band activity in the contralateral hemisphere over the motor cortex provided the best detection of either sustained or ceased movement of the right or left hand. The offline classification of four motor tasks (sustain or cease to move right or left hand) provided 10-fold cross-validation accuracy as high as 88% for motor execution and 73% for motor imagery. The subjects participating in experiments with physical movement were able to complete the online game with motor execution at the average accuracy of 85.5±4.65%; Subjects participating in motor imagery study also completed the game successfully. The proposed BCI provides a new practical multi-dimensional method by noninvasive EEG signal associated with human natural behavior, which does not need long-term training.


© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

August 2009