Defense Date


Document Type


Degree Name

Doctor of Philosophy



First Advisor

Charles Chalfant


In the presented study, we demonstrate that the alternative splicing of caspase 9 was dysregulated in a large percentage of NSCLC tumors and cell lines. These findings led to the hypothesis that survival pathways activated by oncogenic mutation regulated this mechanism. Indeed, the oncogenic PI3-Kinase/Akt pathway was demonstrated to regulate the alternative splicing of caspase 9. Further mechanistic studies demonstrate that multiple Akt isoforms can regulate the alternative splicing of caspase 9 in NSCLC. Akt was additionally shown to mediate the exclusion of the exon 3,4,5,6 cassette of caspase 9 via the phospho-state of the RNA trans-factor, SRp30a. Mutagenesis studies identified serine 199, serine 201, serine 227, and serine 234 as critical residues regulating the alternative splicing of caspase 9, as well as playing a role in the anchorage-independent growth of A549 cells. Since dysregulation of this splicing mechanism correlated with NSCLC tumors/cell lines and constitutively active Akt, oncogenic factors for NSCLC known to activate the PI3-Kinase/Akt pathway were examined in HBEC-3KT cells. In contrast to k-ras V12 expression, the overexpression/mutation of EGFR affected the alternative splicing of caspase 9 in a pro-oncogenic manner, dramatically lowering the caspase 9a/9b mRNA ratio. Stable downregulation of caspase 9b by shRNA blocked the ability of E746-A750 del EGFR expressing HBEC-3KTs to induce anchorage-independent growth, suggesting a role for caspase 9b as a cooperative oncogenic factor. These findings were further corroborated by the ability of caspase 9b expression to completely block the inhibition of clonogenic colony formation by erlotinib. Therefore, this study demonstrates that oncogenic factors activating the PI3-Kinase/Akt pathway regulate the alternative splicing of caspase 9, to produce caspase 9b, via a coordinated mechanism involving the phosphorylation of SRp30a. In additional studies, we demonstrate that the PI3-Kinase/PKCι pathway, a pathway important for cancer cell survival and transformation of lung epithelial cells, regulates the alternative splicing of Bcl-x pre-mRNA via modulation of SAP155 expression to produce an anti-apoptotic phenotype in NSCLC. Therefore, these studies link oncogenic mechanisms in NSCLC to the therapeutically relevant and distal target mechanisms of caspase 9 and Bcl-x pre-mRNA splicing.


© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

November 2009