Defense Date


Document Type


Degree Name

Doctor of Philosophy


Electrical Engineering

First Advisor

Hadis Morkoc


Engineers know well from an early point in their training the trials and tribulations of having to make design tradeoffs in order to optimize one performance parameter for another. Discovering tradeoff conditions that result in the elimination of a loss associated with the enhancement of some other parameter (an improvement over a typical tradeoff), therefore, ushers in a new paradigm of design in which the constraints which are typical of the task at hand are alleviated. We call such a design paradigm “tuning” as opposed to “trading off”, and this is the central theme of this work. We investigate two types of microwave electronic devices, namely GaN-based heterostructure field effect transistors (HFETs) and tunable ferroelectric-ferrite-based microwave phase shifters. The “tuning” associated with these types of devices arises from the notion of an optimal 2DEG density, capable of achieving higher performance in terms of electron velocity and enhanced reliability in the case of the HFET, and the coupling of ferroelectric and ferrite materials in tunable microwave phase shifters, capable of achieving high differential phase shifts while at the same time mitigating the losses associated with impedance mismatching which typically arise when the phase is tuned. Promises and problems associated with HFET devices based on the intriguing InAlN/GaN material system will be described. We focus on the fundamental problem associated with the induction of the large density of carriers at the interface, namely the disintegration of an excess of longitudinal optical phonons (hot phonons) in the channel. We use microwave measurements in conjunction with stress tests to evidence the existence of an optimal 2DEG density wherein the hot phonon effect can be “tuned,” which allows for enhanced high frequency performance as well as device reliability. Next, we focus on the design, fabrication, and measurement of tunable phase shifters consisting of thin films of BaxSr1-xTiO3 (BST), which has the advantage of having high dielectric tunability as well as relatively low microwave loss. We discuss the design, fabrication, and measurement of a simple coplanar waveguide (CPW) type of phase shifter as well as a more complicated “hybrid” phase shifter consisting of a ferrite (YIG) in addition to BST. The use of such a bilayer allows one to “tune” the impedance of the phase shifters independently of the phase velocity through careful selection of the DC biasing magnetic fields, or alternatively through the use of an additional piezoelectric layer, bonded to YIG whose permeability can then be tuned through magnetostriction.


© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

April 2010