Defense Date


Document Type


Degree Name

Doctor of Philosophy


Human Genetics

First Advisor

Joyce Lloyd


Krüppel-like factor 2 (KLF2) is expressed in endothelial cells in the developing heart, particularly in areas of high shear stress, such as the atrioventricular (AV) canal. KLF2 ablation leads to myocardial thinning, high output cardiac failure and death by mouse embryonic day 14.5 (E14.5) in a mixed genetic background. This work identifies an earlier and more fundamental role for KLF2 in mouse cardiac development in FVB/N mice. FVB/N KLF2-/- embryos die earlier, by E11.5. E9.5 FVB/N KLF2-/- hearts have multiple, disorganized cell layers lining the AV cushions, the primordia of the AV valves, rather than the normal single layer. By E10.5, traditional and endothelial-specific FVB/N KLF2-/- AV cushions are hypocellular, suggesting that the cells accumulating at the AV canal have a defect in endothelial to mesenchymal transformation (EMT). E10.5 FVB/N KLF2-/- hearts have reduced glycosaminoglycans in the cardiac jelly, correlating with the reduced EMT. However, the number of mesenchymal cells migrating from FVB/N KLF2-/- AV explants into a collagen matrix is reduced considerably compared to wild-type, suggesting that the EMT defect is not due solely to abnormal cardiac jelly. Echocardiography of E10.5 FVB/N KLF2-/- embryos indicates that they have abnormal heart function compared to wild-type. E10.5 C57BL/6 KLF2-/- hearts have largely normal AV cushions. However, E10.5 FVB/N and C57BL/6 KLF2-/- embryos have a delay in the formation of the atrial septum that is not observed in a defined mixed background. KLF2 ablation results in reduced Sox9, UDP-glucose dehydrogenase (UGDH), Gata4 and Tbx5 mRNA in FVB/N AV canals. KLF2 binds to the Gata4, Tbx5 and UGDH promoters in chromatin immunoprecipitation assays, indicating that KLF2 could directly regulate these genes. Thus KLF2 plays a role in EMT, through its regulation of important cardiovascular genes. E10.5 FVB/N KLF2-/- embryos show gaps in the endothelial lining at the dorsal aorta and a number of blood cells localized outside the aorta suggesting either hemorrhaging or inability of the hematopoietic progenitors to reach the aortic endothelium and enter circulation. This is not observed in KLF2-/- embryos in a mixed genetic background. In conclusion, KLF2-/- cardiovascular phenotypes are genetic background-dependent. KLF4 is another member of the Krüppel-like transcription factor family phylogenetically close to KLF2. It is known to play an important role in vascular regulation. Our studies show that in vascular development KLF4 plays a complementary role to KLF2, indicated by cranial hemorrhaging in E9.5 KLF2-/-KLF4-/- embryos in an undefined mixed background. This phenotype is absent in either of the single knockouts. The role of KLF2 and KLF4 in vascular development has not been studied as much as adult vascular regulation. This study begins to define the roles of these two transcription factors in development of blood vessels. Congenital heart and valve defects are a common cause of infant mortality. KLF2 has never been studied in this context. Thus this work is important for a better understanding of the biology of valve development.


© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

February 2013