Defense Date


Document Type


Degree Name

Master of Science


Microbiology & Immunology

First Advisor

Michael McVoy


Cytomegalovirus (CMV) is a significant cause of mortality and morbidity in immunocompromised patients and an important cause of birth defects if acquired in utero. The licensed CMV antivirals, ganciclovir, cidofovir and foscarnet, all target the viral DNA polymerase. For each drug prolonged use is associated with significant toxicities and development of drug resistance. None are approved for use during pregnancy. Therefore, development of new anti-CMV drugs that target different pathways would be beneficial. All herpesviruses encode an alkaline nuclease. That genetic disruption of the CMV alkaline nuclease, UL98, reduces CMV replication by 1,000-fold suggests that UL98 may be a useful target for development of novel anti-CMV drugs. Moreover, using herpes simplex virus type 1 Hsiang and Ho found that the anthraquinone emodin inhibits activity of the viral alkaline nuclease, blocks viral replication in cell culture, and reduces viral pathogeneses in a mouse model (Brit. J. of Pharm., 2008). Earlier studies also showed that anthraquinone derivatives including emodin have anti-CMV activity (Barnard et al., Antiviral Research 1992 & 1995), although the mechanism of CMV inhibition has not been further studied. We therefore sought to confirm the anti-CMV activities of emodin and related anthraquinone derivatives, to characterize their mechanisms of action, and to determine specifically if they act through inhibition of UL98. Using a luciferase-based CMV yield reduction assay emodin inhibited CMV replication (IC50 = 4.9 μM); however, that the TD50 for cytotoxicity (determined using an luciferase-based cell viability assay) was only 2-fold higher suggested that emodin may act non-specifically. Two additional anthraquinone derivatives (acid blue 40 and alizarin violet R) inhibited CMV only at high concentrations (IC50 = 238; 265 μM) that were also cytotoxic. Atanyl blue PRL, however, exhibited anti-CMV activity (IC50 = 6.3 μM) with low cytotoxicity (TD50 = 216 μM). Thus, characterization of atanyl blue PRL (impact on gene expression, GFP expression, viral spread, infectivity, time of addition studies, and inhibition of UL98 nuclease activity) should be informative. Atanyl blue PRL appears to block immediate-early gene expression and reduce early and late gene expression. Atanyl blue PRL also blocked GFP expression, reduced viral spread, and also lowered the infectivity of CMV. Finally, atanyl blue PRL inhibits UL98 alkaline nuclease activity at an IC50 of 5.7 μM. This suggests that atanyl blue PRL may inhibit CMV through inhibition of UL98. Thus, atanyl blue PRL represents a novel class of anti-herpesvirals and provides a lead structure for structure based drug discovery.


© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

August 2013