Defense Date


Document Type


Degree Name

Doctor of Philosophy



First Advisor

Barbara Boyan

Second Advisor

Frank Gupton

Third Advisor

Micheal Peters

Fourth Advisor

Zvi Schwartz

Fifth Advisor

Jamal Zweit


The goal of this research was to develop a system of injectable hydrogels to deliver stem cells to musculoskeletal defects, thereby allowing cells to remain at the treatment site and secrete soluble factors that will facilitate tissue regeneration. First, production parameters for encapsulating cells in microbeads were determined. This involved investigating the effects of osmolytes on alginate microbead properties, and the effects of alginate microbead cell density, alginate microbead density, and effects of osteogenic media on microencapsulated cells. Although cells remained viable in the microbeads, alginate does not readily degrade in vivo for six months. Therefore, a method to incorporate alginate lyase in microbeads was developed and optimized to achieve controlled release of viable cells. Effectiveness of this strategy was determined through cell release studies and measuring proteins and expression of genes that are characteristic of the cell’s phenotype. Lastly, in vivo studies were done to assess the ability of alginate microbeads to localize microencapsulated cells and support chondrogenesis and osteogenesis. This project will provide insight to the tissue engineering field regarding cell-based therapies and healing musculoskeletal defects.


© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission