Defense Date


Document Type


Degree Name

Master of Science



First Advisor

Yuichi Motai

Second Advisor

Ruixin Niu

Third Advisor

Preetam Gghosh


Class imbalanced datasets constitute a significant portion of the machine learning problems of interest, where recog­nizing the ‘rare class’ is the primary objective for most applications. Traditional linear machine learning algorithms are often not effective in recognizing the rare class. In this research work, a specifically optimized feed-forward artificial neural network (ANN) is proposed and developed to train from moderate to highly imbalanced datasets.

The proposed methodology deals with the difficulty in classification task in multiple stages—by optimizing the training dataset, modifying kernel function to generate the gram matrix and optimizing the NN structure. First, the training dataset is extracted from the available sample set through an iterative process of selective under-sampling. Then, the proposed artificial NN comprises of a kernel function optimizer to specifically enhance class boundaries for imbalanced datasets by conformally transforming the kernel functions. Finally, a single hidden layer weighted neural network structure is proposed to train models from the imbalanced dataset. The proposed NN architecture is derived to effectively classify any binary dataset with even very high imbalance ratio with appropriate parameter tuning and sufficient number of processing elements.

Effectiveness of the proposed method is tested on accuracy based performance metrics, achieving close to and above 90%, with several imbalanced datasets of generic nature and compared with state of the art methods. The proposed model is also used for classification of a 25GB computed tomographic colonography database to test its applicability for big data. Also the effectiveness of under-sampling, kernel optimization for training of the NN model from the modified kernel gram matrix representing the imbalanced data distribution is analyzed experimentally. Computation time analysis shows the feasibility of the system for practical purposes. This report is concluded with discussion of prospect of the developed model and suggestion for further development works in this direction.


© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission


Available for download on Tuesday, August 10, 2021