Author ORCID Identifier


Defense Date


Document Type


Degree Name

Doctor of Philosophy


Human Genetics

First Advisor

Dr. Jerome F. Strauss


Common, complex disorders are polygenic and multifactorial traits representing interactions between environmental, genetic and epigenetic risk factors. More often than not, contributions of these risk factors have been studied individually and this is especially true for complex reproductive traits where application of genomic technologies has been challenging and slow to progress. This thesis explores the potential of genetic and epigenetic components contributing to a better understanding of the biological pathways underlying disease risk in two specific female complex reproductive traits - polycystic ovary syndrome (PCOS) and preterm premature rupture of membranes (PPROM). The PCOS projects focus on characterization of a gene, DENND1A, whose association to PCOS has been established by Genome Wide Association Studies (GWAS) and is known to contribute to PCOS steroidogenic phenotype. In addition, differential microRNAs expression contributing to DENND1A expression regulation in PCOS theca cells was identified. The studies on PPROM utilize a Whole Exome Sequencing approach to identify rare variants in fetal genes contributing to extracellular matrix composition and synthesis contributing to PPROM risk. The results suggest that fetal contribution to PPROM is polygenic and is driven by a significant genetic burden of potentially damaging rare variants in genes contributing to fetal membrane strength and integrity. Tissue and location specific expression patterns of the Chromosome 21 miRNA cluster (miR-99a, miR-125b, let-7c) in fetal membranes from term pregnancies with spontaneous rupture were investigated. The results suggest that these miRNAs play potential roles in fetal membrane rupture and fetal membrane defects associated with T21.


© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission