Author ORCID Identifier


Defense Date


Document Type


Degree Name

Doctor of Philosophy


Integrative Life Sciences

First Advisor

Dr. Gregory Buck


Virulent Trypanosoma cruzi, and the non-pathogenic Trypanosoma conorhini and Trypanosoma rangeli are protozoan parasites with divergent lifestyles. T. cruzi and T. rangeli are endemic to Latin America, whereas T. conorhini is tropicopolitan. Reduviid bug vectors spread these parasites to mammalian hosts, within which T. rangeli and T. conorhini replicate extracellularly, while T. cruzi has intracellular stages. Firstly, this work compares the genomes of these parasites to understand their differing phenotypes. Secondly, genome architecture of T. cruzi is examined to address the effect of a complex hybridization history, polycistronic transcription, and genome plasticity on this organism, and study its highly repetitive nature and cryptic genome organization. Whole genome sequencing, assembly and comparison, as well as chromosome-scale genome mapping were employed. This study presents the first comprehensive whole-genome maps of Trypanosoma, and the first T. conorhini strain ever sequenced. Original contributions vii to knowledge include the ~21-25 Mbp assembled genomes of the less virulent T. cruzi G, T. rangeli AM80, and T. conorhini 025E, containing ~10,000 to 13,000 genes, and the ~36 Mbp genome assembly of highly virulent T. cruzi CL with ~24,000 genes. The T. cruzi strains exhibited ~74% identity to proteins of T. rangeli or T. conorhini. T. rangeli and T. conorhini displayed greater complex carbohydrate metabolic capabilities, and contained fewer retrotransposons and multigene family copies, e.g. mucins, DGF-1, and MASP, compared to T. cruzi. Although all four genomes appear highly syntenic, T. rangeli and T. conorhini exhibited greater karyotype conservation. T. cruzi genome architecture studies revealed 66 maps varying from 0.13 to 2.4 Mbp. At least 2.6% of the genome comprises highly repetitive repeat regions, and 7.4% exhibits repetitive regions barren of labels. The 66 putative chromosomes identified are likely diploid. However, 20 of these maps contained regions of up to 1.25 Mbp of homology to at least one other map, suggestive of widespread segmental duplication or an ancient hybridization event that resulted in a genome with significant redundancy. Assembled genomes of these parasites closely reflect their phylogenetic relationships and give a greater context for understanding their divergent lifestyles. Genome mapping provides insight on the genomic evolution of these parasites.


© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission


Available for download on Sunday, December 05, 2021