Defense Date


Document Type


Degree Name

Doctor of Philosophy


Microbiology & Immunology

First Advisor

Jason A. Carlyon


Scrub typhus is a potentially fatal infection that threatens one billion persons in the Asia-Pacific region and is caused by the obligate intracellular bacterium, Orientia tsutsugamushi. How this organism facilitates its intracellular survival and pathogenesis is poorly understood. Intracellular bacterial pathogens utilize the Type 1 (T1SS) or Type 4 secretion system (T4SS) to translocate ankyrin repeat-containing proteins (Anks) into the host cell to modulate host cell processes. The O. tsutsugamushi genome encodes one of the largest known bacterial Ank libraries as well as Type 1 and Type 4 secretion systems (T1SS and T4SS), which are expressed during infection. In silico analyses of the Anks’ C-termini revealed that they possess characteristics of T1SS secretion signals. Escherichia coli expressing a functional T1SS was able to secrete chimeric hemolysin proteins bearing the C-termini of 19 of 20 O. tsutsugamushi Anks. In addition to infecting endothelial cells, O. tsutsugamushi infects professional phagocytes. To better understand why these innate immune cells are unable to eliminate O. tsutsugamushi, we addressed the activity of host NF-κB proinflammatory transcription factor. Screening of O. tsutsugamushi infected cells at an MOI of 1 revealed inhibition of NF-κB nuclear accumulation as early as 8 hours in HeLa and bone-marrow derived macrophage cells. When stimulating infected cells with TNF-α, IκBα degradation still occurs, however NF-κB dependent gene transcription remains downregulated. Immunofluorescence microscopic analysis of TNF-α treated cells ectopically expressing all O. tsutsugamushi Anks revealed that two nuclear trafficking Anks, Ank1 and Ank6, result in a significant decrease in NF-κB nuclear accumulation. Additionally, these Anks also significantly inhibited NF-κB dependent gene transcription. Co-immunoprecipitation experiments revealed that both Anks interact with importin-β1, exportin-1, and the p65 NF-κB subunit. Treating cells with importazole significantly reduces the nuclear accumulation of Ank1 and Ank6. Finally, treating infected cells or cells ectopically expressing Ank1 or Ank6 with leptomycin B resulted in restoration of NF-κB nuclear accumulation. With these data, we propose that O. tsutsugamushi secretes Ank1 and Ank6 to initially interact with importin-β1, which permits their nuclear entry where they then interact with NF-κB and subsequently exportin-1 to prevent NF-κB nuclear accumulation.


© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission


Available for download on Sunday, May 08, 2022