Defense Date


Document Type


Degree Name

Doctor of Philosophy


Mechanical and Nuclear Engineering

First Advisor

Dr. P. Worth Longest

Second Advisor

Dr. Laleh Golshahi

Third Advisor

Dr. Michael Hindle

Fourth Advisor

Dr. Karla Mossi

Fifth Advisor

Dr. Rebecca Segal


Dry powder inhalers (DPIs) are advantageous for delivering medication to the lungs for the treatment of respiratory diseases because of the stability of the powders, relative low cost, synchronization of inhalation and dose delivery, and many design options that can be used for optimization. However, currently marketed DPIs are very inefficient in delivering medications to the lungs. This study has developed multiple new high efficiency DPIs for use with spray dried excipient enhanced growth (EEG) powder formulations based on the following platforms: capsule-based for oral inhalation, high-dose for oral inhalation, inline with 3D rod array dispersion, and inline with capillary jet dispersion. The capsule-based DPIs for oral inhalation implemented a 3D rod array for aerosol dispersion with optimal designs producing mass median aerodynamic diameters (MMADs) in the range of 1.3-1.5 µm and emitted doses in the range of 79-81%. Keys to inhaler success were the orientation of the capsule and inclusion of the 3D rod array. For the high-dose oral inhaler, performance was similar to the optimized capsule-based devices, while aerosolizing a much larger mass of powder. Surprisingly, removal of the fluidized bed of spheres improved performance producing a simple high dose device containing only a single dose sphere. The inline device using the 3D rod array was effective in producing particles of approximately 1.5 µm, at flow rates consistent with high flow therapy using a 1 L ventilation bag as the delivery mechanism. Using a capillary jet as the dispersion mechanism, further advances were made to allow for both delivery using a low volume (LV) of air and delivery in low flow therapy. This easily adaptable platform was able to produce a high quality aerosol out of a nasal cannula with an ED greater than 60% and a size (~2 µm) that should produce minimal extrathoracic losses. In conclusion, this study demonstrates (i) the design and optimization of DPIs capable of delivering EEG aerosols to the lungs using oral inhalation, (ii) the ability to deliver EEG aerosols using N2L aerosol administration, and (iii) the design of a new flexible LV-DPI device that is easily adaptable to multiple patients and delivery platforms, which are greatly needed in clinical environments.


© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission


Available for download on Saturday, December 01, 2018