Defense Date

2018

Document Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Neuroscience

First Advisor

Lei Zhou

Abstract

Hyperpolarization-activated, cyclic-nucleotide gated ion channels (HCN channels) are activated by membrane hyperpolarization and modulated by cyclic nucleotides. HCN channels are important to maintain the resting membrane potential and input resistance in neurons and have important physiological functions in the brain and heart. Four mammalian HCN isoforms, HCN1-4, and the isoform cloned from sea urchin, spHCN, have been extensively studied. Among these, only spHCN channel shows a voltage dependent inactivation. Previous studies have shown that the ligand binding in mHCN2 channel is activity dependent: cAMP binding increases along with channel opening or channels in the open state have higher binding affinity for cAMP. But to date, information pertaining to the ligand binding to an inactivated ion channel or desensitized receptor is lacking. To address this gap, we used fluorescently labelled cAMP analogues in conjunction with patch clamp fluorometry (PCF) to study the ligand binding to the spHCN channel in various conformational states. We show that inactivated spHCN channel shows reduced binding affinity for cAMP, compared to that of the closed or open channel. Parallelly, we noticed significant changes to channel function when a combination of laser and photosensitizer was used to study ligand binding. A reactive oxygen species called singlet oxygen has been confirmed to be the major player in this process. Both photo-dynamically generated and chemically generated singlet oxygen modifies spHCN channel by removing the inactivation. The effect of singlet oxygen on channel can be abolished by the mutation of a key histidine (H462) residue in the ion conducting pore. Taken together, these two projects expanded our understanding about the physicochemical nature of fluorophores from two aspects: (i) the release of photon as a valuable tool to study the conformational dynamics in proteins; (ii) the generation of singlet oxygen as an effective modulator of protein function.

Rights

© Vinaykumar Idikuda

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

5-9-2018

Available for download on Monday, May 08, 2023

Share

COinS