Defense Date


Document Type


Degree Name

Master of Science


Microbiology & Immunology

First Advisor

Jason A. Carlyon


Anaplasma phagocytophilum and A. marginale are the etiologic agents of human granulocytic anaplasmosis and bovine anaplasmosis, respectively. Both diseases can be severe, even fatal, and protective vaccines for each are lacking. We recently identified A. phagocytophilum outer membrane protein A (ApOmpA) as being critical for cellular invasion and is expressed during infection of mammalian but not tick cells. Disrupting ApOmpA-host cell interactions significantly inhibits A. phagocytophilum entry into host cells. ApOmpA and its A. marginale ortholog, AM854 (A. marginale OmpA; AmOmpA) exhibit 44% amino acid identity. The ApOmpA invasin domain is highly conserved between both proteins. In this study, we investigated the differential expression of AmOmpA in mammalian versus tick cell lines; the serological cross-reactivity between AmOmpA and ApOmpA; the potential role of AmOmpA in mediating interactions with mammalian host cells; and if inhibiting the AmOmpA-host cell interaction impairs A. marginale cellular invasion. AmOmpA is expressed throughout infection of mammalian, but not tick cells. Sera from A. marginale infected cows recognized both AmOmpA and ApOmpA. Sera from cows immunized with an A. marginale OM complex that conferred protection also recognized both proteins. Thus, ApOmpA and AmOmpA share cross-reactive B-cell epitopes. To determine if AmOmpA plays a role in promoting A. marginale infection, we assessed the abilities of recombinant AmOmpA to competitively inhibit infection of mammalian host cells. To examine the cross-reactive properties of OmpA, we showed that preincubation of host cells with GST-ApOmpA and pretreatment of A. marginale with anti-GST-ApOmpA significantly inhibit A. marginale infection of host cells; and that pretreatment of A. phagocytophilum with serum from cows immunized with an A. marginale OM complex reduces its infection of host cells. These studies advance understanding of conservation of OmpA-mediated cellular invasion between Anaplasma species and highlight the potential of OmpA as a vaccinogen that could offer protection against human and veterinary anaplasmoses.


© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

October 2013

Available for download on Monday, October 02, 2023