Defense Date


Document Type


Degree Name

Doctor of Philosophy



First Advisor

Indika U Arachchige


Nanomaterials, typically less than 100 nm size in any direction have gained noteworthy interest from scientific community owing to their significantly different and often improved physical properties compared to their bulk counterparts. Semiconductor nanoparticles (NPs) are of great interest to study their tunable optical properties, primarily as a function of size and shape. Accordingly, there has been a lot of attention paid to synthesize discrete semiconducting nanoparticles, of where Group III-V and II-VI materials have been studied extensively. In contrast, Group IV and Group IV-V based nanocrystals as earth abundant and less-non-toxic semiconductors have not been studied thoroughly. From the class of Group IV, Ge1-xSnx alloys are prime candidates for the fabrication of Si-compatible applications in the field of electronic and photonic devices, transistors, and charge storage devices. In addition, Ge1-xSnx alloys are potentials candidates for bio-sensing applications as alternative to toxic materials. Tin phosphides, a class of Group IV-V materials with their promising applications in thermoelectric, photocatalytic, and charge storage devices. However, both aforementioned semiconductors have not been studied thoroughly for their full potential in visible (Vis) to near infrared (NIR) optoelectronic applications. In this dissertation research, we have successfully developed unique synthetic strategies to produce Ge1-xSnx alloy quantum dots (QDs) and tin phosphide (Sn3P4, SnP, and Sn4P3) nanoparticles with tunable physical properties and crystal structures for potential applications in IR technologies.

Low-cost, less-non-toxic, and abundantly-produced Ge1-xSnx alloys are an interesting class of narrow energy-gap semiconductors that received noteworthy interest in optical technologies. Admixing of α-Sn into Ge results in an indirect-to-direct bandgap crossover significantly improving light absorption and emission relative to indirect-gap Ge. However, the narrow energy-gaps reported for bulk Ge1-xSnx alloys have become a major impediment for their widespread application in optoelectronics. Herein, we report the first colloidal synthesis of Ge1-xSnx alloy quantum dots (QDs) with narrow size dispersity (3.3±0.5 – 5.9±0.8 nm), wide range of Sn compositions (0–20.6%), and composition-tunable energy-gaps and near infrared (IR) photoluminescence (PL). The structural analysis of alloy QDs indicates linear expansion of cubic Ge lattice with increasing Sn, suggesting the formation of strain-free nanoalloys. The successful incorporation of α-Sn into crystalline Ge has been confirmed by electron microscopy, which suggests the homogeneous solid solution behavior of QDs. The quantum confinement effects have resulted in energy gaps that are significantly blue-shifted from bulk Ge for Ge1-xSnx alloy QDs with composition-tunable absorption onsets (1.72–0.84 eV for x=1.5–20.6%) and PL peaks (1.62–1.31 eV for x=1.5–5.6%). Time-resolved PL (TRPL) spectroscopy revealed microsecond and nanosecond timescale decays at 15 K and 295 K, respectively owing to radiative recombination of dark and bright excitons as well as the interplay of surface traps and core electronic states. Realization of low-to-non-toxic and silicon-compatible Ge1-xSnx QDs with composition-tunable near IR PL allows the unprecedented expansion of direct-gap Group IV semiconductors to a wide range of biomedical and advanced technological studies.

Tin phosphides are a class of materials that received noteworthy interest in photocatalysis, charge storage and thermoelectric devices. Dual stable oxidation states of tin (Sn2+ and Sn4+) enable tin phosphides to exhibit different stoichiometries and crystal phases. However, the synthesis of such nanostructures with control over morphology and crystal structure has proven a challenging task. Herein, we report the first colloidal synthesis of size, shape, and phase controlled, narrowly disperse rhombohedral Sn4P3, hexagonal SnP, and amorphous tin phosphide nanoparticles (NPs) displaying tunable morphologies and size dependent physical properties. The control over NP morphology and crystal phase was achieved by tuning the nucleation/growth temperature, molar ratio of Sn/P, and incorporation of additional coordinating solvents (alkylphosphines). The absorption spectra of smaller NPs exhibit size-dependent blue shifts in energy gaps (0.88–1.38 eV) compared to the theoretical value of bulk Sn3P4 (0.83 eV), consistent with quantum confinement effects. The amorphous NPs adopt rhombohedral Sn4P3 and hexagonal SnP crystal structures at 180 and 250 °C, respectively. Structural and surface analysis indicates consistent bond energies for phosphorus across different crystal phases, whereas the rhombohedral Sn4P3 NPs demonstrate Sn oxidation states distinctive from those of the hexagonal and amorphous NPs owing to complex chemical structure. All phases exhibit N(1s) and ʋ(N-H) energies suggestive of alkylamine surface functionalization and are devoid of tetragonal Sn impurities.


© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission


Available for download on Thursday, August 08, 2019