Author ORCID Identifier

0000-0002-0420-3740

Defense Date

2019

Document Type

Thesis

Degree Name

Master of Science

Department

Bioinformatics

First Advisor

Vladimir Vladimirov

Abstract

PrediXcan is a recent software for the imputation of gene expression from genotype data alone. Using an overlapping set of transcriptome datasets from postmortem brain tissues of donors with alcohol use disorder and neurotypical controls, which were generated by two different platforms (e.g., Arraystar and Affymetrix), and an additional unrelated transcriptome dataset from lung tissue, we sought to evaluate PrediXcan’s ability to impute gene expression and identify differentially expressed genes. From the Arraystar platform, 1.3% of matched genes between the measured and imputed expression had a Pearson correlation ≥ 0.5. Our attempt to replicate this finding using the expression data from the Affymetrix platform also lead to a similarly poor outcome (2.7%). Our third attempt using the transcriptome data from lung tissue produced similar results (1.1%) but performance improved markedly after filtering out genes with a low predicted R2, which was a model metric provided by the PrediXcan authors. For example, filtering out genes with a predicted R2 below 0.6 led to 16 genes remaining and a Pearson correlation of 0.365 between the measured and imputed expression. We were unable to reproduce similar performance gains with filtering the Arraystar or Affymetrix alcohol use disorder datasets. Given that PrediXcan can impute a narrow portion of the transcriptome, which is further reduced significantly by filtering, we believe caution is warranted with the interpretation of results derived from PrediXcan.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

5-8-2019

Share

COinS