Defense Date

2020

Document Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Computer Science

First Advisor

Eyuphan Bulut

Abstract

Mobile Opportunistic Networks (MSNs) enable the interaction of mobile users in the vicinity through various short-range wireless communication technologies (e.g., Bluetooth, WiFi) and let them discover and exchange information directly or in ad hoc manner. Despite their promise to enable many exciting applications, limited battery capacity of mobile devices has become the biggest impediment to these appli- cations. The recent breakthroughs in the areas of wireless power transfer (WPT) and rechargeable lithium batteries promise the use of peer-to-peer (P2P) energy sharing (i.e., the transfer of energy from the battery of one member of the mobile network to the battery of the another member) for the efficient utilization of scarce energy resources in the network. However, due to uncertain mobility and communication opportunities in the network, resource optimization in these opportunistic networks is very challenging. In this dissertation, we study energy utilization in three different applications in Mobile Social Networks and target to improve the energy efficiency in the network by benefiting from P2P energy sharing among the nodes. More specifi- xi cally, we look at the problems of (i) optimal energy usage and sharing between friendly nodes in order to reduce the burden of wall-based charging, (ii) optimal content and energy sharing when energy is considered as an incentive for carrying the content for other nodes, and (iii) energy balancing among nodes for prolonging the network lifetime. We have proposed various novel protocols for the corresponding applications and have shown that they outperform the state-of-the-art solutions and improve the energy efficiency in MSNs while the application requirements are satisfied.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

11-5-2020

Share

COinS