Document Type


Original Publication Date


Journal/Book/Conference Title

Plos One





DOI of Original Publication



Originally published at

Date of Submission

April 2016


While advances in therapeutic approaches have resulted in improved survival rates for women diagnosed with breast cancer, subsets of these survivors develop persistent psychoneurological symptoms (fatigue, depression/anxiety, cognitive dysfunction) that compromise their quality of life. The biological basis for these persistent symptoms is unclear, but could reflect the acquisition of soma-wide chromosomal instability following the multiple biological/psychological exposures associated with the diagnosis/treatment of breast cancer. An essential first step toward testing this hypothesis is to determine if these cancer-related exposures are indeed associated with somatic chromosomal instability frequencies. Towards this end, we longitudinally studied 71 women (ages 23-71) with early-stage breast cancer and quantified their somatic chromosomal instability levels using a cytokinesis-blocked micronuclear/cytome assay at 4 timepoints: before chemotherapy (baseline); four weeks after chemotherapy initiation; six months after chemotherapy (at which time some women received radiotherapy); and one year following chemotherapy initiation. Overall, a significant change in instability frequencies was observed over time, with this change differing based on whether the women received radiotherapy (p=0.0052). Also, significantly higher instability values were observed one year after treatment initiation compared to baseline for the women who received: sequential taxotere/doxorubicin/cyclophosphamide (pp=0.014). Significant predictive associations for acquired micronuclear/cytome abnormality frequencies were also observed for race (p=0.0052), tumor type [luminal B tumors] (p=0.0053), and perceived stress levels (p=0.0129). The impact of perceived stress on micronuclear/cytome frequencies was detected across all visits, with the highest levels of stress being reported at baseline (p =0.0024). These findings suggest that the cancer-related exposome has an impact on both healthy somatic cells and tumor cells, and may lead to persistent chromosomal instability. In addition, stress was a significant predictor of chromosomal instability; thus, interventions that aim to reduce stress may reduce acquired soma-wide chromosomal instability for cancer survivors.


Copyright © 2015 Aboalela et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Is Part Of

VCU Human and Molecular Genetics Publications

S1_Table.xlsx (35 kB)
Summary data for measures evaluated in this manuscript.