Document Type


Original Publication Date


Journal/Book/Conference Title

Radiation Oncology





DOI of Original Publication



Originally published at

Date of Submission

April 2016


Background and purpose: The need for target adjustment due to respiratory motion variation and the value of carina as a motion surrogate is evaluated for locally advanced non-small-cell lung cancer. Material and methods: Using weekly 4D CTs (with audio-visual biofeedback) of 12 patients, respiratory motion variation of primary tumors (PT), lymph nodes (LN) and carina (C) were determined. Results: Mean (SD) 3D respiratory motion ranges of PT, LN and C were 4 (3), 5 (3) and 5 (3) mm. PT and LN (p = 0.003), and LN and C motion range were correlated (p = 0.03). Only 20 %/5 % of all scans had variations >3 mm/5 mm. Large respiratory motion range on the initial scan was associated with larger during-treatment variations for PT (p = 0.03) and LN (p = 0.001). Mean (SD) 3D relative displacements of PT-C, LN-C and PT-LN were each 6 (2) mm. Variations of displacements >3 mm/ 5 mm were observed in 28 %/6 % of scans for PT-LN, 20 %/9 % for PT-C, and 20 %/8 % for LN-C. Conclusions: Motion reassessment is recommended in patients with large initial motion range. Relative motion-related displacements between PT and LN were larger than PT and LN motion alone. Both PT and C appear to be comparable surrogates for LN respiratory motion.


© 2015 Jan et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http:// applies to the data made available in this article, unless otherwise stated.

Is Part Of

VCU Radiation Oncology Publications