Document Type


Original Publication Date


Journal/Book/Conference Title




DOI of Original Publication



Originally published at

Date of Submission

November 2014


Oxysterol sulfation plays an important role in regulation of lipid metabolism and inflammatory responses. In the present study, we report the discovery of a novel regulatory sulfated oxysterol in nuclei of primary rat hepatocytes after overexpression of the gene encoding mitochondrial cholesterol delivery protein (StarD1). Forty-eight hours after infection of the hepatocytes with recombinant StarD1 adenovirus, a water-soluble oxysterol product was isolated and purified by chemical extraction and reverse-phase HPLC. Tandem mass spectrometry analysis identified the oxysterol as 5-cholesten-3β, 25-diol, disulfate (25HCDS), and confirmed the structure by comparing with a chemically synthesized compound. Administration of 25HCDS to human THP-1-derived macrophages or HepG2 cells significantly inhibited cholesterol synthesis and markedly decreased lipid levels in vivo in NAFLD mouse models. RT-PCR showed that 25HCDS significantly decreased SREBP-1/2 activities by suppressing expression of their responding genes, including ACC, FAS, and HMG-CoA reductase. Analysis of lipid profiles in the liver tissues showed that administration of 25HCDS significantly decreased cholesterol, free fatty acids, and triglycerides by 30, 25, and 20%, respectively. The results suggest that 25HCDS inhibits lipid biosynthesis via blocking SREBP signaling. We conclude that 25HCDS is a potent regulator of lipid metabolism and propose its biosynthetic pathway.


This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Is Part Of

VCU Medical Center Publications