Document Type
Article
Original Publication Date
2008
Journal/Book/Conference Title
BMC Neuroscience
Volume
9 (Suppl 2)
DOI of Original Publication
10.1186/1471-2202-9-S2-S8
Date of Submission
September 2014
Abstract
At present, available treatments for Alzheimer's disease (AD) are largely unable to halt disease progression. Microglia, the resident macrophages in the brain, are strongly implicated in the pathology and progressively degenerative nature of AD. Specifically, microglia are activated in response to both β amyloid (Aβ) and neuronal damage, and can become a chronic source of neurotoxic cytokines and reactive oxygen species (ROS). NADPH oxidase is a multi-subunit enzyme complex responsible for the production of both extracellular and intracellular ROS by microglia. Importantly, NADPH oxidase expression is upregulated in AD and is an essential component of microglia-mediated Aβ neurotoxicity. Activation of microglial NADPH oxidase causes neurotoxicity through two mechanisms: 1) extracellular ROS produced by microglia are directly toxic to neurons; 2) intracellular ROS function as a signaling mechanism in microglia to amplify the production of several pro-inflammatory and neurotoxic cytokines (for example, tumor necrosis factor-α, prostaglandin E2, and interleukin-1β). The following review describes how targeting NADPH oxidase can reduce a broad spectrum of toxic factors (for example, cytokines, ROS, and reactive nitrogen species) to result in inhibition of neuronal damage from two triggers of deleterious microglial activation (Aβ and neuron damage), offering hope in halting the progression of AD.
Rights
© 2008 Block; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Is Part Of
VCU Anatomy and Neurobiology Publications
Comments
Originally published at http://dx.doi.org/10.1186/1471-2202-9-S2-S8