Document Type
Article
Original Publication Date
2015
Journal/Book/Conference Title
Nature Neuroscience
Volume
18
Issue
5
DOI of Original Publication
10.1038/nn.3990
Date of Submission
December 2015
Abstract
Diffuse white matter injury (DWMI), a leading cause of neurodevelopmental disabilities in preterm infants, is characterized by reduced oligodendrocyte formation. Oligodendrocyte precursor cells (NG2-cells) are exposed to various extrinsic regulatory signals, including the neurotransmitter GABA. We investigated GABAergic signaling to cerebellar white matter NG2-cells in a mouse model of DWMI (chronic neonatal hypoxia). We found that hypoxia caused a loss of GABAA receptor-mediated synaptic input to NG2-cells, extensive proliferation of these cells and delayed oligodendrocyte maturation, leading to dysmyelination. Treatment of control mice with a GABAA receptor antagonist or deletion of the chloride-accumulating transporter NKCC1 mimicked the effects of hypoxia. Conversely, blockade of GABA catabolism or GABA uptake reduced NG2-cell numbers and increased the formation of mature oligodendrocytes both in control and hypoxic mice. Our results indicate that GABAergic signaling regulates NG2-cell differentiation and proliferation in vivo, and suggest that its perturbation is a key factor in DWMI.
Rights
Copyright © 2015, Rights Managed by Nature Publishing Group
Is Part Of
VCU Anatomy and Neurobiology Publications
Comments
Originally published at http://dx.doi.org/10.1038/nn.3990