Document Type
Article
Original Publication Date
2017
Volume
218
Issue
5
DOI of Original Publication
10.1007/s11258-017-0715-0
Date of Submission
June 2017
Abstract
Barrier islands are at the forefront of storms and sea-level rise. High disturbance regimes and sediment mobility make these systems sensitive and dynamic. Island foredunes are protective structures against storm-induced overwash that are integrally tied to dune grasses via biogeomorphic feedbacks. Shifts in dune grass dominance could influence dune morphology and susceptibility to overwash, altering island stability. In a glasshouse study, two dune grasses, Ammophila breviligulata and Uniola paniculata, were planted together and subjected to a 20 cm burial to quantify morphological and physiological responses. Burial had positive effects on both plants as indicated by increased electron transport rate and total biomass. Ammophila breviligulata performance declined when planted with U. paniculata. Uniola paniculata was not affected when planted with A. breviligulata but did have higher water use efficiency and nitrogen use efficiency. Planted in mixture, differential reallocation of biomass occurred between species potentially altering resource acquisition further. As U. paniculata migrates into A. breviligulata dominated habitat and A. breviligulata performance diminishes, biotic interactions between these and other species may affect dune formation and community structure. Our study emphasizes the importance of studying biotic interactions alongside naturally occurring abiotic drivers.
Rights
© Springer Science+Business Media Dordrecht 2017
Is Part Of
VCU Biology Publications
Comments
Originally published at https://doi.org/10.1007/s11258-017-0715-0