Document Type
Article
Original Publication Date
2018
Journal/Book/Conference Title
Water
Volume
10
Issue
4:492
First Page
1
Last Page
14
DOI of Original Publication
10.3390/w10040492
Date of Submission
October 2019
Abstract
Most domestic wastewater can be effectively treated for secondary uses by engineered biological systems. These systems rely on microbial activity to reduce nitrogen (N) content of the reclaimed water. Such systems often employ a tidal-flow process to minimize space requirements for the coupling of aerobic and anaerobic metabolic processes. In this study, laboratory-scale tidal-flow treatment systems were studied to determine how the frequency and duration of tidal cycling may impact reactor performance. Fluorescent in situ hybridization and epifluorescence microscopy were used to enumerate the key functional groups of bacteria responsible for nitrification and anaerobic ammonium oxidation (anammox), and N-removal efficiency was calculated via a mass-balance approach. When water was cycled (i.e., reactors were filled and drained) at high frequencies (16–24 cycles day−1), nitrate accumulated in the columns—presumably due to inadequate periods of anoxia that limited denitrification. At lower frequencies, such as 4 cycles day−1, nearly complete N removal was achieved (80–90%). These fill-and-drain systems enriched heavily for nitrifiers, with relatively few anammox-capable organisms. The microbial community produced was robust, surviving well through short (up to 3 h) anaerobic periods and frequent system-wide perturbation.
Rights
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Is Part Of
VCU Biology Publications
Comments
Originally published at https://doi.org/10.3390/w10040492
Funded in part by the VCU Libraries Open Access Publishing Fund.