Document Type

Article

Original Publication Date

2018

Journal/Book/Conference Title

Physical Chemistry Chemical Physics

Volume

20

First Page

28465

Last Page

28475

DOI of Original Publication

10.1039/C8CP05774E

Comments

Accepted manuscript is attached. The original publication is available here: https://doi.org/10.1039/C8CP05774E

Date of Submission

August 2019

Abstract

Irradiation of aqueous [AuCl4]with 532 nm nanosecond (ns) laser pulses produces monodisperse (PDI = 0.04) 5 nm Au nanoparticles (AuNPs) without any additives or capping agents via a plasmon- enhanced photothermal autocatalytic mechanism. Compared with 800 nm femtosecond (fs) laser pulses, the AuNP growth kinetics under ns laser irradiation follow the same autocatalytic rate law, but with a significantly lower sensitivity to laser pulse energy. The results are explained using a simple model for simulating heat transfer in liquid water and at the interface with AuNPs. While the extent of water superheating with the ns laser is smaller compared to the fs laser, its significantly longer duration can provide sufficient energy to dissociate a small fraction of the [AuCl4]present, resulting in the formation of AuNPs by coalescence of the resulting Au atoms. Irradiation of initially formed AuNPs at 532 nm results in plasmon-enhanced superheating of water, which greatly accelerates the rate of thermal dissociation of [AuCl4]and accounts for the observed autocatalytic kinetics. The plasmon-enhanced heating under ns laser irradiation fragments the AuNPs and results in nearly uniform 5 nm particles, while the lack of particles’ heating under fs laser irradiation results in the growth of the particles as large as 40 nm.

Is Part Of

VCU Chemistry Publications

Included in

Chemistry Commons

Share

COinS