Document Type

Article

Original Publication Date

2013

Journal/Book/Conference Title

The Scientific World Journal

Volume

2013

Issue

Article ID 896056, 10 pages

DOI of Original Publication

10.1155/2013/896056

Comments

Originally published at http://dx.doi.org/10.1155/2013/896056.

Date of Submission

August 2014

Abstract

Noise can compromise the extraction of some fundamental and important features from biomedical signals and hence prohibit accurate analysis of these signals. Baseline wander in electrocardiogram (ECG) signals is one such example, which can be caused by factors such as respiration, variations in electrode impedance, and excessive body movements. Unless baseline wander is effectively removed, the accuracy of any feature extracted from the ECG, such as timing and duration of the ST-segment, is compromised. This paper approaches this filtering task from a novel standpoint by assuming that the ECG baseline wander comes from an independent and unknown source. The technique utilizes a hierarchical method including a blind source separation (BSS) step, in particular independent component analysis, to eliminate the effect of the baseline wander. We examine the specifics of the components causing the baseline wander and the factors that affect the separation process. Experimental results reveal the superiority of the proposed algorithm in removing the baseline wander.

Rights

Copyright © 2013 Yurong Luo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Is Part Of

VCU Computer Science Publications

Share

COinS