Document Type
Article
Original Publication Date
2019
Journal/Book/Conference Title
IEEE Access
Volume
7
First Page
10015
Last Page
10027
DOI of Original Publication
10.1109/ACCESS.2019.2891933
Date of Submission
October 2019
Abstract
Outlier detection is an extensive research area, which has been intensively studied in several domains such as biological sciences, medical diagnosis, surveillance, and traffic anomaly detection. This paper explores advances in the outlier detection area by finding anomalies in spatio-temporal urban traffic flow. It proposes a new approach by considering the distribution of the flows in a given time interval. The flow distribution probability (FDP) databases are first constructed from the traffic flows by considering both spatial and temporal information. The outlier detection mechanism is then applied to the coming flow distribution probabilities, the inliers are stored to enrich the FDP databases, while the outliers are excluded from the FDP databases. Moreover, a k-nearest neighbor for distance-based outlier detection is investigated and adopted for FDP outlier detection. To validate the proposed framework, real data from Odense traffic flow case are evaluated at ten locations. The results reveal that the proposed framework is able to detect the real distribution of flow outliers. Another experiment has been carried out on Beijing data, the results show that our approach outperforms the baseline algorithms for high-urban traffic flow.
Rights
© 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Is Part Of
VCU Computer Science Publications
Comments
Originally published at https://doi.org/10.1109/ACCESS.2019.2891933
Funded in part by the VCU Libraries Open Access Publishing Fund.