Document Type
Article
Original Publication Date
2013
Journal/Book/Conference Title
ISRN Corrosion
Volume
2013
DOI of Original Publication
10.1155/2013/376823
Date of Submission
September 2014
Abstract
Corrosion surface damage in the form of pitting and microcracks is observed in many systems and affects the integrity of steel structures in nuclear, civil, and industrial engineering. In order to gain a better understanding and develop nondestructive and automatic detection/assessment of corrosion damage and its growth, an image analysis based on texture using wavelet transforms and color features was carried out. Experiments were conducted on steel 304 panels under three different electrolyte solutions, and periodic scans were used to obtain the images for analysis over time. The results obtained from the image analysis are presented to illustrate the metrics which best characterize early stage corrosion damage growth behavior. The results obtained indicate that textural features in combination with color features are more effective and may be used for correlating service/failure conditions based on corrosion morphology.
Rights
Copyright © 2013 Ramana M. Pidaparti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Is Part Of
VCU Mechanical and Nuclear Engineering Publications
Comments
Originally published at: http://dx.doi.org/10.1155/2013/376823