Document Type
Article
Original Publication Date
2006
Journal/Book/Conference Title
International Journal of Photoenergy
Volume
2006
DOI of Original Publication
10.1155/IJP/2006/20951
Date of Submission
September 2014
Abstract
We report on the use of a water-soluble, light-absorbing polythiophene polymer to fabricate novel photovoltaic devices. The polymer is a water-soluble thiophene known as sodium poly[2-(3-thienyl)-ethoxy-4-butylsulfonate] or PTEBS. The intention is to take advantage of the properties of conjugated polymers (flexible, tunable, and easy to process) and incorporate the additional benefits of water solubility (easily controlled evaporation rates and environmentally friendly). The PTEBS polythiophene has shown significant photovoltaic response and has been found to be effective for making solar cells. To date, solar cells in three different configurations have been produced: titanium dioxide (TiO2) bilayer cells, TiO2 bulk heterojunction solar cells, and carbon nanotubes (CNTs) in bulk heterojunctions. The best performance thus far has been achieved with TiO2 bilayer devices. These devices have an open circuit voltage (Voc) of 0.84V, a short circuit current (Jsc) of 0.15 mA/cm2, a fill factor (ff) of 0.91, and an efficiency (η) of 0.15 %.
Rights
Copyright © 2006 James T. McLeskey Jr. and Qiquan Qiao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Is Part Of
VCU Mechanical and Nuclear Engineering Publications
Comments
Originally published at http://dx.doi.org/10.1155/IJP/2006/20951