Document Type
Article
Original Publication Date
2012
Journal/Book/Conference Title
Journal of Applied Physics
Volume
112
Issue
2
DOI of Original Publication
10.1063/1.4737792
Date of Submission
October 2015
Abstract
Switching the magnetization of a shape-anisotropic 2-phase multiferroic nanomagnet with voltage-generated stress is known to dissipate very little energy (<1 aJ for a switching time of ∼0.5 ns) at 0 K temperature. Here, we show by solving the stochastic Landau-Lifshitz-Gilbert equation that switching can be carried out with ∼100% probability in less than 1 ns while dissipating less than 1.5 aJ at room temperature. This makes nanomagnetic logic and memory systems, predicated on stress-induced magnetic reversal, one of the most energy-efficient computing hardware extant. We also study the dependence of energy dissipation, switching delay, and the critical stress needed to switch, on the rate at which stress on the nanomagnet is ramped up or down.
Rights
Roy, K., Bandyopadhyay, S., & Atulasimha, J. Energy dissipation and switching delay in stress-induced switching of multiferroic nanomagnets in the presence of thermal fluctuations. Journal of Applied Physics, 112, 023914 (2012). Copyright © 2012 American Institute of Physics.
Is Part Of
VCU Electrical and Computer Engineering Publications
Comments
Originally published at http://dx.doi.org/10.1063/1.4737792