Document Type
Article
Original Publication Date
2008
Journal/Book/Conference Title
Physical Review B
Volume
77
Issue
15
DOI of Original Publication
10.1103/PhysRevB.77.155439
Date of Submission
April 2015
Abstract
We calculate the terahertz absorption spectra associated with intersubband transitions in a semiconductor quantum wire in the presence of spin-orbit interaction and a transverse magnetic field. The frequencies and intensities of the absorption peaks are found to depend strongly on the spin-orbit coupling strength, which can be varied with an external electric field. This feature can be exploited to realize reconfigurable multispectral terahertz detectors and amplitude and/or frequency modulators. We also show that electric dipole transitions between spin-split levels in the same subband (which are normally deemed forbidden) become allowed because of spin texturing effects. The absorption associated with these transitions experience a redshift (blueshift) with increasing spin-orbit coupling strength for materials with negative (positive) g factor. The normally allowed transitions, on the other hand, experience the opposite shift, i.e., blue for materials with negative g factor and red for materials with positive g factor. The theory described here is universal and applies to all semiconductors.
Rights
Upadhyaya, P., Pramanik, S., and Bandyopadhyay, S. Optical transitions in a quantum wire with spin-orbit interaction and its applications in terahertz electronics: Beyond zeroth-order theory. Physical Review B, 77, 155439 (2008). Copyright © 2008 American Physical Society.
Is Part Of
VCU Electrical and Computer Engineering Publications
Comments
Originally published by the American Physical Society at: http://dx.doi.org/10.1103/PhysRevB.77.155439