DOI
https://doi.org/10.25772/BBH7-DV70
Defense Date
2005
Document Type
Thesis
Degree Name
Master of Science
Department
Physics
First Advisor
Dr. Alison Baski
Abstract
This thesis uses the techniques of atomic force microscope (AFM) and conductive AFM (C-AFM) to study the conduction properties of n-type GaN films. A total of 16 samples were examined and grouped according to their surface morphologies and conduction behaviors. The most common type of surface morpliology was that of Ga-rich samples having undulating "hillocks" with interspersed holes. Although most of the samples had this common morphology, their local conduction behaviors were not all similar. Local I-V spectra of the tip-sample Schottky contact could be grouped according to three major types: low leakage, high leakage, and "p-type". The highest quality samples with low leakage were usually grown at moderate temperatures (~650°C). For such samples, localized leakage only occurred at screw dislocations located at small pits terminating surface hillocks. I-V spectra taken on and off such hillocks were fit in forward bias to determine whether field emission or Frenkel-Poole conduction were dominant. Although field emission is a good fit compared to Frenkel-Poole, yielding reasonable values for the barrier height, the results are not yet conclusive without variable temperature studies.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
June 2008