DOI
https://doi.org/10.25772/2DHZ-6C10
Defense Date
2010
Document Type
Thesis
Degree Name
Master of Science
Department
Biology
First Advisor
Paul Bukaveckas
Abstract
Nutrient retention is governed by the interplay between physical processes that control the throughput of water and materials (i.e., water residence time), and by biological processes that govern transformation and uptake (e.g., microbial denitrification). A partial breach of the dam located on Kimages Creek (VA) re-established the historical (pre-1920) connection to the James River and provided a well-defined channel to gauge tidal exchange. We quantified tidal exchange as well as non-tidal (watershed) inputs on a monthly basis to assess Nitrogen (N) retention. Water and N fluxes were dominated by tidal exchange which was typically three times greater than inputs from the upper watershed. Exchange volumes varied by 20-fold in response to seasonal variation in water elevation of the James River Estuary. Comparison of input and output fluxes suggest that the tidal segment of Kimages Creek acted as a source of dissolved inorganic N in the winter and a N sink in other months. Seasonal variation in N retention was significantly related to water temperature and estimates of ecosystem metabolism derived from diel dissolved oxygen data.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
May 2010