DOI
https://doi.org/10.25772/7ZY1-CT04
Defense Date
2011
Document Type
Thesis
Degree Name
Master of Science
Department
Human Genetics
First Advisor
Shawn Holt
Abstract
Induced Pluripotent Stem cells (iPScs) are artificially generated cells that demonstrate multilineage differentiation potential. These cells demonstrate similar morphology and high differentiation potential to Embryonic Stem Cells (ESCs). Generation of these cells from a terminally differentiated cell line requires activation of the core pluripotency genes Nanog, Oct4, and Sox2 as well as an oncogenic stimulus such as c-Myc. Here we examine the effect of the Human Pappiloma Virus derived proteins E6 and E7 on the ability of a terminally differentiated fibroblast cell line to a more primitive state and examine its multilineage differentiation capacity. In this paper, we attempt to differentiate BJ hTERT fibroblasts into adipogenic and osteogenic lineages with and without the core pluripotency factors Nanog, Oct4, Sox2 and also c-Myc using non-integrative adenoviral infections. We review the potential mechanisms through which changes in differentiation capacity changes occur through examination of the effects of E6 on the tumor suppressor protein p53. We determined that the proteins E6 and E7 when stably infected into BJ hTERT fibroblasts increase induced differentiation into adipogenic and osteogenic lineages. E6 and E7 can be considered components for generating cells with multipotent capacity with the addition of as little as one core pluripotency factor.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
August 2011