DOI
https://doi.org/10.25772/BYSJ-FG62
Defense Date
2011
Document Type
Thesis
Degree Name
Master of Science
Department
Biology
First Advisor
S. Leigh McCallister
Abstract
Atmospheric CO2 emissions are on the rise and are expected to reach 780 parts per million by the year 2100. Research investigating the impacts of increasing CO2 is a relatively new field and the response of phytoplankton communities is largely unknown, especially in coastal and freshwater ecosystems where no CO2 manipulation studies have completed. The present study attempts to encourage uniformity in methods utilized in CO2 perturbation studies and identifies changes in phytoplankton abundance in freshwater (James River) and coastal ocean (Atlantic, Cape Hatteras) sites. A novel bubbling method to manipulate pCO2 was compared with the classic method of acid addition in conjunction with laboratory and in situ experiments. The novel and classic methods were equally effective at manipulating carbonate chemistry to predicted levels. However, the laboratory experiment saw greater variation in both pCO2 levels and chlorophyll-a concentrations throughout the four-day incubation period. The results from the present study encourage use of the novel methodology in combination with in situ experimental setup to assess changes in phytoplankton communities as a result of pCO2 enrichment. This pairing will allow greater replication of small volume incubations without introducing new abiotic conditions such as temperature and light. Additionally this study found no significant treatment effect on phytoplankton communities in either freshwater James River or coastal Atlantic.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
August 2011