DOI

https://doi.org/10.25772/E5F7-YF44

Defense Date

2012

Document Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Mechanical and Nuclear Engineering

First Advisor

Ramana Pidaparti

Abstract

This paper will discuss the design, fabrication, and testing of a Poly(dimethylsiloxane) (PDMS) microfluidic pump. PDMS is commonly described as a soft polymer with very appealing chemical and physical properties such as optical transparency, low permeability to water, elasticity, low electrical conductivity, and flexible surface chemistry. PDMS microfluidic device fabrication is done easily with the use of soft lithography and rapid prototyping. PDMS microfluidic devices make it easier to integrate components and interface devices with particular users, than using typically harder materials such as glass and silicon. Fabrication and design of single and multilayer PDMS microfluidic devices is much easier and straightforward than traditional methods. A novel design of a PDMS micropump with multiple vibrating membranes has been developed for application in drug delivery and molecule sorting. The PDMS micropump consists of three nozzle/diffuser elements with vibrating membranes, which are used to create pressure difference in the pump chamber. Preliminary analysis of the fluidic characteristics of the micropump was analyzed with ANSYS to investigate the transient responses of fluid velocity, pressure distributions, and flow rate during the operating cycle of the micropump. The design simulation results showed that the movement of the wall membranes combined with rectification behavior of three nozzle/diffuser elements can minimize back flow and improve net flow in one direction. To prove that the theoretical design is valid, the fabrication and testing process of the micropump has been carried out and completed. This paper will discuss in depth the design, fabrication, and testing of the PDMS micropump.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

May 2012

Included in

Engineering Commons

Share

COinS