DOI
https://doi.org/10.25772/DPFP-R445
Defense Date
2015
Document Type
Dissertation
Degree Name
Doctor of Philosophy
Department
Information Systems
First Advisor
Dr. Kweku-Muata Osei-Bryson
Abstract
Online customer reviews are web content voluntarily posted by the users of a product (e.g. camera) or service (e.g. hotel) to express their opinions about the product or service. Online reviews are important resources for businesses and consumers. This dissertation focuses on the important consumer concern of review utility, i.e., the helpfulness or usefulness of online reviews to inform consumer purchase decisions. Review utility concerns consumers since not all online reviews are useful or helpful. And, the quantity of the online reviews of a product/service tends to be very large. Manual assessment of review utility is not only time consuming but also information overloading. To address this issue, review helpfulness research (RHR) has become a very active research stream dedicated to study utility-sensitive review analysis (USRA) techniques for automating review utility assessment.
Unfortunately, prior RHR solution is inadequate. RHR researchers call for more suitable USRA approaches. Our current research responds to this urgent call by addressing the research problem: What is an adequate USRA approach? We address this problem by offering novel Design Science (DS) artifacts for personalized USRA (PUSRA). Our proposed solution extends not only RHR research but also web personalization research (WPR), which studies web-based solutions for personalized web provision. We have evaluated the proposed solution by applying three evaluation methods: analytical, descriptive, and experimental. The evaluations corroborate the practical efficacy of our proposed solution.
This research contributes what we believe (1) the first DS artifacts to the knowledge body of RHR and WPR, and (2) the first PUSRA contribution to USRA practice. Moreover, we consider our evaluations of the proposed solution the first comprehensive assessment of USRA solutions. In addition, this research contributes to the advancement of decision support research and practice. The proposed solution is a web-based decision support artifact with the capability to substantially improve accurate personalized webpage provision. Also, website designers can apply our research solution to transform their works fundamentally. Such transformation can add substantial value to businesses.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
5-2-2015
Included in
Business Intelligence Commons, E-Commerce Commons, Marketing Commons, Technology and Innovation Commons
Comments
Online customer reviews are web content voluntarily posted by the users of a product (e.g. camera) or service (e.g. hotel) to express their opinions about the product or service. Online reviews are important resources for businesses and consumers. This dissertation focuses on the important consumer concern of review utility, i.e., the helpfulness or usefulness of online reviews to inform consumer purchase decisions. Review utility concerns consumers since not all online reviews are useful or helpful. And, the quantity of the online reviews of a product/service tends to be very large. Manual assessment of review utility is not only time consuming but also information overloading. To address this issue, review helpfulness research (RHR) has become a very active research stream dedicated to study utility-sensitive review analysis (USRA) techniques for automating review utility assessment.
Unfortunately, prior RHR solution is inadequate. RHR researchers call for more suitable USRA approaches. Our current research responds to this urgent call by addressing the research problem: What is an adequate USRA approach? We address this problem by offering novel Design Science (DS) artifacts for personalized USRA (PUSRA). Our proposed solution extends not only RHR research but also web personalization research (WPR), which studies web-based solutions for personalized web provision. We have evaluated the proposed solution by applying three evaluation methods: analytical, descriptive, and experimental. The evaluations corroborate the practical efficacy of our proposed solution.
This research contributes what we believe (1) the first DS artifacts to the knowledge body of RHR and WPR, and (2) the first PUSRA contribution to USRA practice. Moreover, we consider our evaluations of the proposed solution the first comprehensive assessment of USRA solutions. In addition, this research contributes to the advancement of decision support research and practice. The proposed solution is a web-based decision support artifact with the capability to substantially improve accurate personalized webpage provision. Also, website designers can apply our research solution to transform their works fundamentally. Such transformation can add substantial value to businesses.