DOI
https://doi.org/10.25772/TSCZ-6E50
Defense Date
1998
Document Type
Thesis
Degree Name
Master of Science
Department
Physiology and Biophysics
First Advisor
Raphael J. Witorsch
Abstract
In the absence of mitogen, administration of Dexamethasone (Dex) induces apoptosis, or programmed-cell death in the Nb2 lymphoma cell. Addition of prolactin (Prl), on the other hand, blocks this effect. As a model for apoptosis, we were able to investigate this Dex-Prl interaction by means of a morphological approach: one that could be visualized under a light microscope. This approach allowed us to achieve several aims. First, we were able to develop a method of cell quantification befitting a morphological study based upon the hemacytometer. Second, with Trypan Blue exclusion, we were able to verify Dex/Prl-responsiveness in the Nb2 cells. Third, we were able to refine and characterize the TUNEL (Tdt-dependent dUTP-biotin Nick End Labeling) assay as a means of detecting apoptosis in both log phase and synchronized cells. With the synchronized cells, we observed that the time frame of apoptosis onset as measured by Trypan Blue and the TUNEL assay, occurred between 6 and 8 hours. Fourth, using immunocytochemistry (ICC), we were able to characterize and establish specificity of affinity purified polyclonal rabbit antibodies directed against the signal proteins, glucocorticoid receptor (GR), STATSb, NFkB and lkBα. Fifth, we were able to examine how these signal proteins changed in response to Dex treatment using ICC. According to our results, the percentage of positively stained cells for each of these signal proteins remained constant for each time point and treatment.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
4-11-2017
Comments
Scanned, with permission from the author, from the original print version, which resides in University Archives.