DOI
https://doi.org/10.25772/P4P5-1Y59
Defense Date
2017
Document Type
Thesis
Degree Name
Master of Science
Department
Biomedical Engineering
First Advisor
Dianne T.V. Pawluk
Abstract
Vibrotactile feedback offers a unique opportunity to augment or reconstruct impaired tactile sensations, whether that be in the form of enhancing prosthetics or specialized protective clothing. Important information about temperature and object slippage serve to endanger the human operator or equipment. This thesis presents three experiments which investigate amplitude modulated vibrotactile signals as a scalar dimension of roughness, the effect those signals and their locations (finger pad, forearm, bicep) have on the performance of two tasks: the sensing of temperatures simulated by vibrotactile signals and gripping an object of simulated surface texture. The results show task performance increase when the feedback and site of action are co-located for sensory tasks and decrease for manipulatory tasks.
Rights
© Matthew Standard
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
12-13-2017