DOI
https://doi.org/10.25772/AEVN-B689
Defense Date
2018
Document Type
Thesis
Degree Name
Master of Science in Dentistry
Department
Dentistry
First Advisor
Zhao Lin
Second Advisor
Thomas C. Waldrop
Third Advisor
Harvey Schenkein
Fourth Advisor
Alvin Best
Abstract
Background: Directing autogenous Mesenchymal Stem Cell (MSC) to defect sites has a great promise in bone regeneration. We designed a MSC specific, bone affinity peptide (E7HA7) by conjugating E7 with a polyglutamate hydroxyapatite (HA) binding motif. We sought to characterize the in-vivo releasing pattern and bioactivity of E7HA7. Methods: HA discs were coated with fluorescent labeled peptides E7HA7, E7HA2 or E7 were subcutaneously implanted in Sprague Dawley rats. In an ectopic bone formation model was used to test the in-vivo bioactivity of E7HA7 conjugated to DBM. Results: E7HA7 showed slower peptide release from scaffolds in comparison to other groups, being statistically significant at week 2 compared to E7, and to E7HA2 at week 4 and 8. In ectopic model, the medians for new bone formation in each group were: iDBM=0.041mm3, iDBM-E7=0.071mm3, aDBM=0.138mm3, and aDBM-E7=0.192mm3. Conclusions: Conjugation of E7 to polyglutamate bone binding domain showed slow releasing kinetics and osteoinductive potential.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
5-4-2018