DOI
https://doi.org/10.25772/43AF-ME96
Author ORCID Identifier
0000-0002-5038-5776
Defense Date
2018
Document Type
Dissertation
Degree Name
Doctor of Philosophy
Department
Engineering
First Advisor
Stephen S Fong
Abstract
The potential value of the chitin biomass (e.g. food waste) is recently considered being ignored by landfill. Chitin can be a potential cheap carbon source for converting into value-added chemicals by microorganisms. Serratia marcescens is a chitinolytic bacterium that harbors endogenous chitinase systems. With goals of characterzing S. marcescens chitinolytic capabilities and applying S. marcescens to chemical production from chitin, my dissertation main content includes five chapters: 1) Chapter 1 highlights background information of chitin source, S. marcescens and potential metabolic engineering targets using chitin as a substrate; 2) Chapter 2 demonstrates that ChiR is a key regulator in regulating 9 chitinase-related genes in S. marcescens Db11 and manipulation of chiR can be a useful and efficient genetic target to enhance chitin utilization; 3) Chapter 3 reports the production of N-acetylneuraminic acid (Neu5Ac) from chitin by a bottom-up approach of engineering the nonconventional chitinolytic bacterium, Serratia marcescens, including native constitutive promoter characterization and transcriptional and translational pathway balancing; 4) Chapter 4 describes improvement of S. marcescens chitinolytic capability by an adaptive evolution approach; 5) Chapter 5 elucidates S. marcescens intracellular metabolite profile using a constraint-based genome-scale metabolic model (iSR929) based on genomic annotation of S. marcescens Db11. Overall, the dissertation work is the first report of demonstrating the concept of chitin-based CBP using S. marcescens and the computational model and genetic molecular tools developed in this dissertation are valuable but not limited to design-build-test of S. marcescens for contributing to the field of biological science and metabolic engineering applications.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
5-7-2018