DOI
https://doi.org/10.25772/GCRZ-YP96
Defense Date
1982
Document Type
Dissertation
Degree Name
Doctor of Philosophy
Department
Physiology and Biophysics
First Advisor
Stephen F. Cleary
Abstract
The effect of pulsed electric fields on cell membranes were studied to investigate the effects of an electric field, per se, on biological systems, without the densometric and other technical problems associated with other forms of nonionizing radiation. Exposure of mouse splenocytes to a high voltage pulse resulted in an increase in membrane permeability to K+ that was dependent on both the electric field strength and the pulse duration. Exposure to a 2 μsec, 3.0 kV/cm pulse elicited a 50% loss of intracellular K+ indicating that the critical transmembrane potential (Vm) at breakdown was 1.26 volts for the membrane of mouse spleen cells. These results agreed with previous studies on erythrocytes and micro-organisms.
Effects of a pulsed electric field on a cell's functional integrity were assessed by measuring 3H-thymidine incorporation by lymphocytes cultured in the presence and absence of various mitogens following exposure to an electrical pulse. No statistically significant effects on the response of mouse spleen lymphocytes to Con-A, PHA, or LPS were observed following exposure to a 2 usec electric pulse. Exposure to 10 μsec pulses ≥ 2.4 kV/cm produced a statistically significant reduction in the response of lymphocytes to LPS stimulation. While not statistically significant, results from both 2 and 10 usec experiments consistently indicated that exposure to pulses at sublethal electric field strengths may have a stimulatory effect on mouse spleen lymphocytes. This result is discussed and an experiment to resolve this issue is presented.
Exposure of Ehrlich ascites tumor cells to 2 μsec electrical pulses produced no statistically significant alterations in the tumorigenicity of these cells. K+ release data indicated these cells are unusually resistant to the effects of pulsed electric fields having a high breakdown potential, Vm = 2.37 volts.
Rights
© The Author
Is Part Of
VCU University Archives
Is Part Of
VCU Theses and Dissertations
Date of Submission
6-19-2018
Comments
Scanned, with permission from the author, from the original print version, which resides in University Archives.